时间:2022-12-29 03:30:38
导语:在工业化学论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
从总体上来看,现行培养方案的的培养目标及基本要求符合专业特点及专业发展的需要,课程设置及课时安排也基本符合专业的要求。但是现行培养方案也存在着一些问题:(1)理论课的学时较多,容易形成以教师为主导的教学模式,学生自主学习和从事创新性实验项目的时间不足,而且所学习的理论知识难以应用于实践,在毕业实习、毕业设计中表现尤为突出。(2)由于公共课程较多的原因,学生在前三个学期的学习过程中难以接触到真正的专业课程,真正学习专业理论知识的时间非常有限,也造成了安排在大一下半学期的认知实习难以对学生产生相应的专业影响。(3)核心课程的核心地位不突出,既没有从课时上保证,也没有从考核方式上来要求。(4)没有专业概论课程,学生到了三、四年级,对专业的认识还不够清晰,对课程之间的承接关系没有概念,综合运用专业知识来解决实际问题的能力不足。(5)部分课程内容重复,难以形成教学上的高效率。(6)课程体系中没有能很好地跟上现代化学工业中信息化的脚步,已经广泛应用的设计软件,如Aspenplus、ProE等还没有进入课程体系。(7)毕业实习还有待加强,目前安排的毕业实习时间较短,难以达到实习的目的。
2化学工程与工艺专业人才培养模式改革的思路
美国、德国等发达工业国家的统计资料表明,高级工程人才的需求比例为:从事工程科学研究的人才为5%,这部分人才主要以研究和发现工程过程中的基本理论为主,偏重于工程学术研究;从事设计、开发的工程人才约占35%,主要工作是将科学原理和学科体系知识转化为设计方案或设计图纸;从事生产工艺、运行维护、管理销售等工作的工程技术人员约占65%,将设计方案与图纸转化为产品。后两者可以统称为工程应用人才。化工学院在建院之初,就确定了以培养工程应用型人才为主要目标。根据几年来在人才培养的探索与实践过程中,我们认为,确切地说,我们应该以打造工程生产一线工程师、工程技术人员为人才培养的主要目标,也就是说,以培养工程技术人员为主,对于一些学有余力的学生,可以通过进一步的深造和在实践工作岗位上的锻炼,成为工程人才。培养化工类工程应用型人才,就是要强调本科教育的专业性,通过本科教育这一相对完整的人才培养周期,是学生接受相对完整的、作为一线工程师所需要的基本教育,具有一线工程师应有的基本知识、基本能力、基本素质。学生通过这样的教育,应该具有系统的专业基础知识、较强的实践动手能力、主动的自主学习能力、灵活的岗位适应能力,在现有成熟的化工技术和规范的基础上,能够应用理论知识和技术,解决生产实际中的具体技术问题,特别是应用所学专业知识进行集成创新和引进吸收再创新。同时,一线工程师还应具有一定的人文精神和环境意识。现代化学工业,不仅融化学科学、化工技术、艺术于一体,还与自然资源、生态环境、伦理道德等重大社会问题息息相关,在“十”提出“建设美丽中国”的历史背景下,在培养的学生多数服务于生态环境脆弱的西部地区的前提下,更应该注重培养学生的人文精神和环保意识[3]。经过四年的执行,现行培养方案在培养应用型化工技术人才方面起到了重要的作用,也积累了丰富的经验。在新方案修订过程中,要在保持原方案优点,尤其是突出实践教学的基础上,针对原方案的不足,结合现代化学工业新的发展现状以及地区经济,来综合考虑,完成修订工作。基于这样的认识,对于新的培养方案,需要遵循“理论系统够用,突出实践动手,营造工程背景,重视过程培养与评价,提倡自主学习,强化创新训练”的原则。化学工程与工艺专业人才培养方案修订工作的指导思想:以复合型、创新性人才培养为核心,以教学改革、科学研究和服务社会为宗旨,以高素质、重能力、求创新为根本,以学生为主体、教师为主导,培养学生理论知识、综合能力、实践技能和科学素养全面协调健康发展。力求达到理论与实践、基础与提高、传承与创新、教学与科研、素质教育与技术训练的统一。
3化学工程与工艺专业人才培养模式改革的内容
明确提出以转变教育思想和更新教育观念为先导,以完善和落实本科综合培养方案为主线,深化教学改革;优化课程体系,更新教学内容,加强实践环节,改进教学方法和教学手段;加强师资队伍建设,提高教师整体综合素质,形成一支教学科研相结合、教学思想活跃、知识结构、年龄结构优化的教学梯队;注重学生知识、能力、素质、个性的协调发展,强化创新意识,进一步提高人才培养质量,走改革和创新之路,探索教学管理的新机制、新模式,开创教学工作的新局面。
3.1理论课的教育改革(1)深化课程体系改革,构建创新能力和全面发展的化工专业人才培养计划调整知识结构,本着“理论系统够用”的原则,认真梳理现行培养方案中的理论课程体系,根据专业方向,确定4~5门核心课程,凸显核心课的核心地位,以核心课程为中心,构建理论课程体系。将理论课程按课程的特点、内容和相关性进行进一步整合,划分为课程群,即将部分前后有衔接的课程,进行内容整合,减少重叠内容,突出重点,通过课程群的建设,使学生在学习时可以更加连贯,便于融会贯通。(2)改革和更新教学内容,积极吸收本专业科学技术发展的新成果,将化工及相关领域新技术、新成果纳入课堂教学;(3)深化教学方法改革,尊重学生个性发展,推进启发式和讨论式教学方法,提倡案例教学;主要课程注重引进和选用国内外优秀教材,不断促进本科教学质量的提升。(4)改革教学技术,推行现代化教学手段。包括:多媒体、网络、仿真等。尽可能采用双外语教学。(5)改进教学和管理机制,在理论教学过程中,重视过程培养和评价,并以此为契机,提倡学生自主学习,在教学大纲上和教学内容上引导学生自学。
3.2实践性教学环节的教育改革工程技术人才的创新能力集中体现在工程实践活动中创造新的技术成果的能力,包括新产品和新技术的研发,新流程和新装置的设计,新的工厂生产过程操作运行方案等。反映在教学过程中就是工程实践能力的训练和培养。因此在改革中高度重视和加强实践类教学环节,继续保证实践教学的突出地位。在实践性教学环节中,构建由易到难,贯穿全程,逐步贴近工程实际的实践教学体系,保证实践教学环节比重在整个培养方案的比重不低于25%,适当调整理论教学课程,使教学前移,为学生创造更多地时间参与工程实践,并积极创造条件推进“3+1”培养模式的改革。对教学计划内要求的实践性教学,结合工程实际,以实验与工艺基本操作技能训练为基础,积极开展教学改革和建设。具体方案:在基础实验方面,重视对学生实际动手能力、规范操作和严谨务实的作风的培养。在专业基础实验方面,结合地区经济的发展和教师的科研方向开发大综合专业实验项目,逐步引入具有工程意义的实验项目,增加综合性、设计性和研究型实验的比例。为后续实践教学、创新性实验项目、学科竞赛、毕业设计等环节奠定基础。在校内实训平台建设中,基于工程背景及地方产业特点,以培养学生动手及实践能力和工程意识为出发点,形成满足培养化工类专业和相关专业的实践综合能力训练及培养的实训课程体系。以学校建设化工实训中心为契机,加强工程实训,弥补毕业实习过程中只能看不能动的缺憾,是学生真正了解化工厂。在毕业实习和毕业设计(论文)环节,贯彻卓越工程师计划,建立学生到企业和社会开展实践实习的有效机制。精选认识实习单位,加强基地建设,继续为学生在毕业实习过程中提供“顶岗实习”机会,结合就业,让学生能够在就业后缩短适应期。提高学生对专业的认同度和优越感,提高学习本专业的兴趣。毕业设计以工厂实际设计为题,毕业论文以教师科研为题。落实理论联系实际,结合工程与科研实际,一人一题,真题真做。实施双向选择和规范化管理。使学生的分析问题、解决问题、协作精神、创新意识和能力等得到充分锻炼。
3.3课堂外教学环节的教育改革对教学计划外的实践能力培养,可通过开展各类科技创新实践活动、大赛和专业技能培训的形式进行延伸。加强科研与实践教学的融合,组建学生科研兴趣小组,强化化工设计、计算机辅助设计等环节,全面训练实践能力。目前我院已开展大学生创新实验、校级“化学实验技能竞赛”,参加全国大学生挑战杯、“PRO/E建模设计大赛”和全国大学生化工设计大赛”等赛事上取得好成绩。2012年、2013年、2014年由中国化工学会、中国化工教育协会、教育部高等学校化学工程与工艺专业教学指导分委员会举办的国内包括清华大学、天津大学、浙江大学等百所高校参加的“中国石化-三井化学杯”杯大学生化工设计竞赛中,以本专业学生为主的代表队最终获得全国一等奖二项,全国二等奖四项的优异成绩。这些活动的开展即可从多方面培养大学生的创新思维和工程技能,培养团队协作精神,增强大学生的工程设计与实践能力,又可帮助学生发现、发展各自的志趣、潜力和特长,并对学生的就业和考研起到积极作用。
4结语
在半导体生产工厂中使用的中央化学药液供应系统可以根据机台的不同有两种分类,一种是单纯的药液供应系统(SupplySystem):将化学液自储存设备,利用供酸机台及管路供应给制程机台使用。另一种是具有混合、加热或者搅拌等功能的功能系统(FunctionalSystem):将药液从储存设备,先经过稀释混合、加热、冷却或者搅拌沉淀的功能之后,再供应给制程机台使用。具体使用哪种供液方式,取决于机台的功能以及工艺上的要求。
1.1中央供药液基本要求
不同系统会有不同的要求,但是大部分的供液系统有相同基本的要求:
(1)操作安全性,能耐腐蚀、耐压力、防爆等;
(2)化学液零污染,要求系统中与化学液接触部分完全与化学液兼容,不会产生反应或者溶解;
(3)微粒子控制,药液因为温度压力可能会产生微粒,需要用过滤器循环过滤;
(4)流量要求,各个机台需要的流量不同,整个供液系统需要满足最高的流量要求;
(5)泄露报警,如果系统中有泄露的地方,需要立即发出警报,在界面中显示出泄露大概区域,并且暂停这一部分的供液功能,关闭相关部分的阀门和动力系统,使得故障能迅速恢复,将损失降到最低。把信息结果汇入故障诊断系统;
(6)取样分析,各段供应的化学液需要进行自动取样分析,根据需要分析系统和管路中带入的粒子以及金属离子。把结果汇入故障诊断系统;
(7)自动控制运转,系统和各个机台的交互运行能够进行自动控制,提供运行监控界面,显示实时系统状态,其中包括泵、过滤系统、压力容器等的各种参数,如果一旦有参数超出正常范围,进行自动调节之后将进行报警,将信息汇入故障诊断系统;
(8)自动的维护保养系统功能,能够在系统闲时,根据具体情况,定期对系统管路进行保养维护以及清洁,延长整个系统的使用,提高系统的安全性;
(9)化学液用量的统计,能根据人为控制或者自动结算监控,及时调整药液供应时间和频率,使得药液供应能及时补充生产,不成为整个生产的瓶颈;
(10)系统自动故障诊断,根据前面提及的各个控制系统汇总的故障信息,自动诊断故障点或者可能发生故障点的相关度,最大化的缩短故障排除时间。
1.2系统设备使用材料
系统中设备容器及管路使用的材料。
1.3中央集中供药液方式
首先根据药液使用量的大小选择药液的供应容器,如果使用量很大,比如在多个清洗步骤中都会使用到的强氧化剂H2O2以及强酸浓硫酸H2SO4,就使用槽车供应先到化学液充填站,再使用氮气加压输送至大于10m3的存储罐中。使用量中等或者少量的化学液例如HF以及显影液等,则使用便携式可移动的容器来输送到主管路。经过过滤系统的化学液则通过N2或者泵分别输入各个三通阀箱。化学液的驱动方式有两种,一种是泵传输,另一种是使用N2产生压力输送。其中常用于半导体中央供药液的泵也有很多种类,其中因为驱动方式的不同可以分为气动泵、电动泵和磁力泵等,其中气动泵成本经济,并且可使用耐腐蚀材料制造,输送一些酸性药液。磁力泵密封性很好,可以做到完全不泄露,动力输入和输出可以完全零摩擦,降低能耗。电机驱动的泵可以做到很精确的闭环控制,已达到最终的高精度输出。而N2压力输送,常用在一些药液黏度大,用量精度高、挥发性强以及燃点低的情况下。
1.4化学液集中供应系统控制流程
是中央集中供液的总体流程示意图。药液会根据使用量的大小采取不同的供应容器,通过化学液过滤系统CDU过滤不符合要求的微粒子,再通过三通阀箱TeeBox阀箱以及分支阀箱VMB供应到各个机台,其中在各段不同点需要有化学液采样分析盒SamplingBox,最终的分析信息需要汇总到总控制台的故障诊断系统。为单路多反馈控制流程图。具体到单路的控制流程里,主管路将溶液供应到CDU过滤系统,当化学液中的微粒尺寸和数量满足要求之后,会将电信号反馈给OCP即运算处理器。当机台发出需求信号时,OCP判断CDU信号,如果满足要求OCP将控制信号通过HUB放大信号之后发送给VMB分支阀箱,这时过滤好的药液就会通过三通阀箱以及分支阀箱供应给机台。如果机台、阀箱以及过滤系统有漏液、堵塞以及完成等状态,信号会被反馈给OCP,OCP将处理当前状态,关闭执行单元,并且将信号通过HUB发送到系统数据监控和采集系统SCADASystem,相应发出警示或者警报。在一些清洗或者刻蚀工艺中,有些机台使用的是不同化学液的混合物,需要根据一定的体积或者质量比例进行配液。机台可能会在工艺槽中直接配液,或者有配液槽进行提前配液以及其它的预备功能,比如加热、搅拌反应或者冷却降温等。现在通常使用的都是将质量比例换算成体积比例进行配比。精度要求不高的,并且混合后体积不会有很大变化的混液过程,可以通过混液槽里使用液位传感器进行体积控制。精度要求高的使用流量传感器来测量流过的液体体积。为了达到较高的精度要求,传感器则需要安装在距离配液容器进口处。
1.5化学液集中供应安全防护系统
化学液输送系统需要以下安全装置:
(1)设置溢出流量阀或者开关(ExcessValve/Switch)以及相应排放管道,用于在系统中由于某些故障造成的输送无法停止、泄露以及腐蚀等等紧急情况下,化学液的排放溢出。
(2)泄露相关安全保护,其中包括检测化学液泄露的传感器。这类传感器有耐腐蚀性,能够保证长时间的检测寿命。可根据具体化学液的性质进行类型选择,如果有导电性,可选择导线式传感器,可根据不同点之间电阻值得变化检测到泄露以及泄露位置。如果无导电性,可选择光电式传感器,可避免化学液接触导致的腐蚀。除了选择检测传感器,还需要有泄露二次围堵和排放功能,以免泄露造成污染腐蚀等引起的二次危险与损失。
(3)各段化学液供应源处安装手动开关,在遇有紧急情况时可切断化学液供应或者分流,以保证需要保护的装备切断或者减少化学液进入。
(4)化学液桶、槽和柜进行填充时,需要有液位传感器或者压力传感器,实时监测化学液液位及压力,如果超过一定值时供应必须自动停止。
(5)易燃易爆化学液输送系统应该配有灭火装置,使用火焰、温度或者烟雾传感器监测,一旦发生险情,必须能进行有效的灭火并且有声光报警,以及远程报警信号传输。
2结束语
关键词:物理化学;课程改革;化工专业;实践导向
0引言
“物理化学”课程是高等院校化学、化工、制药、材料和生化等专业的学生必修专业基础课之一.“物理化学”课程综合运用数学、物理等学科的理论和实验手段来解决化学反应中出现的问题,并研究在化学变化中所遵循的规律.物理化学是多种学科的理论基础,尤其在理科、工科化学系列课程体系中起着重要作用.由于“物理化学”课程的理论性强、公式多,学生在学习过程中难免觉得内容过于抽象而难以理解[1-2],同时所学内容与实际应用联系较小,造成学习的畏惧感,学习效果不理想.鉴于物理化学在化工相关专业知识结构中所处的重要位置,尤其对后面要学习的“化工原理”“化工热力学”和“催化原理”等课程起着重要的铺垫作用,因此,“物理化学”课程的建设对高质量化工专业人才的培养至关重要.多年来,我校化学与材料科学学院物理化学课程组通过更新教育理念,在物理化学的教学内容、教学方法、教学思想和教师队伍建设等方面取得显著成效.完成“物理化学”省级精品课程的建设和验收工作,成效显著.“物理化学”课程团队被遴选为学校重点建设的课程团队.在这样的背景下,如何以实践为导向,在教学过程中培养学生的工科思维,提高他们解决实际问题的能力是工科物理化学教学值得思考的重要问题.
1调整理论教学内容,侧重工程实践导向
相比而言,我校开设化工专业的历史较短,所用物理化学教材也一直沿用我校化学(师范)、应用化学和材料化学专业使用的《物理化学》(第五版、南京大学傅献彩等编写)教材,以相应的《物理化学学习指导》(南京大学孙德坤和沈文霞等编写)作为学生的指导资料.在授课的过程中,虽然也积极拓展部分内容,在一定程度上解决与化工实践过程联系不密切的矛盾.但随着我校化工专业的建设和发展,如果继续使用偏重理论教学的物理化学教材显然不合时宜.以课程体系的改革为契机,基于实践导向的新教材的选用成为物理化学教学改革的出发点.从2014开始,精选天津大学物理化学教研室编写的《物理化学》(第五版)[3]工科教材作为我校化工专业物理化学课程教材.与原教材相比,天津大学编写的工科“物理化学”教材增加许多与实际工业生产相关的知识点,如真实气体的液化及临界参数、真实气体状态方程、二组分液体部分互溶系统的温度-组成图和完全不互溶系统的温度-组成图,以及多相化学反应等,目的是帮助学生能更好地了解和掌握物理化学原理在化工生产中的应用,有利于化工专业学生的工科思维的养成.另外,工科“物理化学”教材将电解质溶液、可逆电池电动势及其应用和电解与极化作用3部分内容合并为电化学,将化学动力学基础和化学动力学基础合并为化学动力学,既优化教学内容,又适当降低理论深度,更重要的是拓展学生的实践视野.本教材在我院近几年的使用过程中,获得学生良好的反响.
另外,随着现代科学技术的快速发展,图文并茂、生动形象的教学课件对工科物理化学课堂教学的支撑作用是显而易见的.由于物理化学课程内容的抽象性,注重通过演示与基本原理相关的实验现象对接实践应用,让学生更好地理解所学理论知识与工程实践的直接关系[4],更好地突出物理化学理论知识对工程实践的指导作用.在授课过程中,除讲授教材上的基础知识外,还注重把从事物理化学方面的科研体会以及最新科研成果有机地融入到物理化学教学过程中,更好地激发学生对“物理化学”课程的学习兴趣,使学生更加认识到物理化学在生活和化工行业中的重要性,同时也培养学生加快适应工业生产的能力和科学创新的思维能力[5].
2优化课堂教学方法,注重实例说明理论
由于化工专业的学生将来所从事的职业与生产实践更加紧密相连,所以,采用何种教学方法才能更加有效地提高学生的工程实践能力是物理化学教学过程中面临的问题之一.物理化学内容抽象、公式多而杂,在课堂讲授中要更加注重结合具体实例来阐述理论内容,才能有效地帮助学生深入理解和接受所学的理论知识.例如,讲授界面现象中弯曲液面下的附加压力时,用他们所熟悉的人工降雨和暴沸现象来说明开尔文公式,只有水蒸汽液化凝结成新相小液滴(凸液面),小液滴逐渐长大才能从天上落下雨滴.由于新相小液滴刚开始很难形成,即水蒸汽的过饱和蒸气压pr非常大,天空中的水蒸汽气压很难达到pr,因而需要采用人工的方式提供小液滴形成时的凝聚中心,大幅度降低pr的数值,使雨滴顺利形成.同理,液体受热气化形成新相小气泡(凹液面),小气泡逐渐长大才能从液体里逸出,但新相小气泡开始很难形成,即液体过热也不沸腾,是因为液体中的小气泡压力很小达不到外界大气压的数值,因而需要向液体中加入实验中常用的沸石(孔中含空气)增加初始小气泡的大小,使气泡压力很快达到外界大气压值,保证气体从液体中顺利逸出,避免形成过热液体,引起事故.总之,利用具体实例讲授比较抽象的物理化学知识,使学生在学习理论中更接近实际生产和生活,激发他们将理论运用于实践的潜能.
3多方位理解实验原理,提高动脑与动手能力
伴随着物理化学理论教学内容的调整,也将相关的实验教学内容进行优化.例如:化学反应过程中常常伴随着反应热的形成,如果不能及时地移除多余的热量导致反应温度升高,反应速率加快,将对化工生产安全带来极大的隐患.所以,反应过程中温度的测量与调控在化工生产中显得尤为重要.目前,在物理化学实验中涉及到多种类型的温度计(如玻璃温度计、贝克曼温度计、热电偶等)用于测量反应体系的温度.作为温差测量的贝克曼温度计,广泛应用在恒温槽的组装和性能测试、稀溶液的凝固点降低实验中.由于精密电子温度测量仪器的普遍使用,使得贝克曼温度计在实验中的利用率逐渐降低,但它仍可以作为一种简便的辅助仪器使用.另外,温度效应常常在实验中有所体现.如醋酸-水-氯仿三组分系统的相图绘制实验,其成败与温度的关系比较密切.然而,大部分学生在实验过程中并没有注意到这个现象,也并不清楚隐含的实验原理.实验过程中,温度影响到各组分间的溶解度,在温度较高的条件下无法观察到明显的浑浊现象,导致不能很好地判定滴定终点.因此,如果能够测定不同温度下的相图,可以使学生更深入地了解萃取过程,理解相图中物系点和相点的概念,对于化工产品分离条件的筛选起到良好地指导作用.其他的实验项目,例如:溶液表面张力的测定、活性炭比表面积的测定、蔗糖水解反应速率常数的测定、高聚物的分子量测定等,温度的影响均不可忽视.
合理的安排实验是保证学生理解并掌握实验原理的前提.但由于参与实验的学生人数较多,普遍的做法是将学生分成若干小组,采用循环的方式开展实验.如果物理化学的理论课与实验课在同一学期开设,在循环实验过程中将不可避免地导致部分实验项目早于理论课程的学习,学生在实验过程中则显得非常被动,对实验理论一知半解,造成他们更多地关注实验操作过程,只动手、缺乏动脑,实验效果并不理想.鉴于此,将实验课的开出时间较理论课程滞后一学期,先让学生充分学习理论知识,再开展相关实验.通过在实验过程中让学生试讲实验内容、回答问题等方式让学生进一步理解实验过程中的理论知识和操作步骤,更好地理论联系实际,教学效果良好.同时,依托我校的安徽省化学工程实训中心,还可以进一步开设与物理化学相关的综合性实验和创新性实验,为学生深入理解物理化学原理、提高学生的动手实践能力奠定基础.
4结语
通过对我校化工专业本科生“物理化学”课程的教学和改革结果,以实践能力培养为目标,优化教学内容,注重理论与实践相结合,逐渐培养学生的工科思维,才能提高学生利用物理化学原理知识综合解决化工实践问题的能力.
参考文献:
[1]黄玉成,杜金艳.工科物理化学教学内容的几点思考[J].广州化工,2015,43(2):161-162.
[2]胡碧茹,吴文健.《物理化学》课程教学改革的相关探索与实践[J].高等教育研究学报,2013,36(2):113-115.
[3]天津大学物理化学教研室.物理化学[M].5版.北京:高等教育出版社,2009.
1中医药术语表征功效的现状与意义
中药的现代科学研究工作沿着中西药结合的道路前进现代对中药所进行的科学研究,主要包括药理、化学和临床研究。药理研究,就是用现代科学的生理、生化、病理等指标表征中药的功效。应包括中药的饮片,也包括提取有效成分的部位或单体化合物。化学研究就是弄清楚中药有效成分及其物理和化学性质,从而为控制药物质量、制剂制备、选择给药途径及保证药物效用提供依据。临床研究就是指用中药所能治疗的按西医诊断的疾病的情况。按上述方法研究的结果尤其是从中分离得到的有效化合物,往往不能再被中医按中医药理论体系进行使用了,只能为西医按西医药理论体系进行使用,也就是说,把中药变成了西药。长此下去,势必出现中药的消亡和西药的丰富与发展。例如,经现代科学研究、发现黄连中的黄连素可抑制细菌,被西医用作抑菌消炎药。然因尚未研究黄连素的中药特性和用中医药术语来表征的功效,故中医不能按中医药理论体系来使用它。中药的特性如四气五味、升降沉浮、归经等,是中药的特点和长处,它们与机体的“证”相对应,直接指导着临床用药。例如从四气中的寒热看,可与“证”对应使用,即热证用寒性药,寒证用热性药,即所谓“热者寒之,寒者热之”。再如归经,按现代观点的结核菌感染的疾患看,有肺、肾、肠、骨等结核病,按中医理论体系分析,这不同部位的疾病,属于不同归经,在选用药物时,是要考虑到的。就急性肾炎和慢性肾炎、急性菌痢和慢性菌痢而言,尽管从西医角度看均属细菌感染性疾患,但从中医看,在急性期属实热证(或湿热证),应选用苦寒药,而在慢性期,则属虚寒证(久病必虚、虚易成寒),是不宜选用苦寒药的。
2丰富和发展中药学
中药的很多苦寒药,均具抑菌消炎作用,当然,并不能由此而完全认为抑菌消炎作用即为中药特性——味苦性寒的表示方法,但起码这表现了中药的味苦性寒这一特性的一个方面。一些临床实践已经证明,它对肾阳虚病人效果较好,而对肾阴虚病人效果不好,这说明它具有中医药学术语的补肾阳的作用。可见二者具有生物活性的同一性。不论西药还是中药都由相应化合物构成,具有以下同一性:有的为结构清楚的单体化合物,有的为结构不清楚的混合物。如西药阿托品、磺胺噻唑是结构清楚的单体化合物:巴甫洛夫合剂、三溴片等为成分结构清楚的混合物,而相当一部分格林制剂及一些天然药物如洋地黄叶、番泻叶等,其成分结构不完全清楚。而中药,尽管大多数药物的成分结构尚不清楚,如天麻、竹茹等,但也有一些成分结构清楚的,如冰片即为龙脑,相当一部分矿物药的成分结构大体清楚。它们大多由天然化合物或人工合成化合物构成。例如西药的利血平,是天然产物,磺胺类药物是人工合成产物,中药的绝大多数如麻黄等是天然产物,但也有人工合成的,如砒石,即为由雄黄(硫化砷AsS)炼制(氧化)而成的三氧化二砷(As2O3)。
3通过中医研究中药物质的五味
参考文献
一、合成生物学:新千年的科学技术
新的研究格局在世纪之交已经呈现,其中生物科学的地位日益凸显,数十年前还不敢想象的技术现在似乎可以实现。但是,新世纪面临着新挑战。世界人口日益增加,气候变化、粮食和能源需求增加、疾病传播等一系列新的问题随之出现。许多科学家和工程师认为,可以通过合成生物学这一新兴而又具有变革潜力的学科应对新世纪面临的部分挑战。
合成生物学是一门将科学和工程方法相结合进行生物学研究和操控的新兴学科。虽然合成生物学还处在“幼年期”――其核心研究内容主要局限于寻找和提炼可执行具体基因功能或生物化学功能的生物元件,并改善DNA合成和构建的方法――但目标远大。合成生物学家们希望设计并构建人工合成的生物系统,最终用于工业制造、粮食生产,并提高全球健康水平。
一般而言,合成生物学是指运用工程学原理,设计和构建新的生物元器件和系统,并重新设计现有的、天然的生物系统,用于有益目的。它源于生物学及相关领域一个世纪的研究成果,但离不开工程学、计算科学、信息技术等领域的重大突破。
合成生物学具有以下重要特点:(1)它是生物学研究的新颖方法。与传统的生命机制探索方法完全相反,合成生物学注重生产定制化的细胞、有机体和生命体。(2)应用工程学方法生产生命体。合成生物学通常应用工程学原理设计执行特定功能的简化的生物元素。(3)依赖于非等级化的科研和商业化网络。合成生物学向着横向的、全球化的研究方式发展,通过社交网络,它吸引了世界各地的年轻科学家。(4)需要响应社会关切。合成生物学是新兴的学科和技术,需要充分考虑该技术的伦理、法律和社会影响,以及人们对其生物安全、监管和知识产权问题的关切。
二、合成生物学发展战略
1.中国。中国认为合成生物学将带来技术推动的新一轮经济增长,因此努力成为该领域的国际领先者。目前,中国每年对合成生物学的研发投资达到2.6亿元,每年发表合成生物学论文400余篇,约占世界总量的10%,论文被引次数居全球第7。中国已经制订了合成生物学战略路线图,规划了技术、工业应用、医学和农业等方面的中长期目标。未来5年,将建立标准元件数据库,形成设计生物元器件的计算能力;形成化学品和生物材料的模块化设计和生产能力;对可增强植物耐旱性和耐碱性的生物元件进行验证设计。未来10年,将扩大标准元器件数据库,形成设计生物系统的计算能力;商业化生产某些化学品和生物材料;对合成固氮器件进行验证设计。未来20年,将形成生物系统设计、建模和验证一体化平台;商业化生产众多自然化合物、药品、化学品和生物燃料;临床应用生物元件和系统,用于检测、控制和治疗主要疾病;创造人工微生物。
2.英国。英国政府把合成生物学视为非常有商业前景的革命性平台,热切期望在合成生物学领域占据世界领先地位。英国政府决定成立合成生物学领导委员会,促进各领域的讨论与公私合作,由部长和资深业界人士担任联合主席。英国计划开展合成生物学投资如下:公共投资5000万英镑,其中多达650万英镑用于鼓励产业投资;英国工程与自然科学研究理事会投资600万英镑,鼓励大学探索新产品商业化;将合成生物学研发和相关的伦理、法律及社会影响研究的资助整合起来;生物技术与生物科学研究理事会支持16个机构从事5个跨国研究项目;拨款1亿英镑,用于未来3-5年对10万名患者进行全基因组测序。
3.美国。美国很早就是合成生物学领跑者。美国政府每年向合成生物学研究投入约1.4亿美元,其中美国国家科学基金会投入约7200万美元。2008年美国国家科学基金会投入1600万美元资助合成生物学工程研究中心。美国国防部力图将合成生物学提升为一种制造平台,美国能源部也围绕合成生物学启动了一些行动。不过,美国联邦政府还没有制订合成生物学投资或管理的整体规划。本届政府的《国家生物经济蓝图》虽然提到了合成生物学,但没有提出具体的行动计划。2010年,美国总统奥巴马指示总统生物伦理问题研究委员会对合成生物学进行评估,并制定伦理指南,意在使风险最小化的同时实现公共利益最大化。
三、合成生物学带来的机遇
合成生物学会带来新一轮产业发展浪潮。产业界大量投资合成生物学,认为伴随着基因组学和系统生物学的不断进步,合成生物学将通过生物制造给产品和物质开发带来革命性影响。到21世纪头十年的中叶,全球就约有3000家生物技术公司,其中基因合成公司遍及五大洲,每年生产约5万条基因。生物产品在经济上举足轻重。2010年,美国的生物经济(包括转基因作物、生物产品和工业生物技术)产值约为3000多亿美元,超过美国GDP的2% 。据市场研究公司BBC Research估计,2011年合成生物学(包括支撑技术、生物元件及其组合产品)全球市场价值为16亿美元,2016年将达到108亿美元。
企业纷纷投资颇具前景的人工改造的生物产品,包括微生物、植物橡胶、生物基丙烯酸树脂、产于生物废料的绿色化学品、维生素以及用可再生碳水化合物生产的生物柴油。美国安伦捷科技公司副总裁达琳・所罗门认为,合成生物学是产业发展的新一轮浪潮,生物制造将以可持续原料取代传统原料,从而改变所有产品的生产工艺,使全球经济更为可持续。
合成生物学的大规模应用及市场推广要耗费数十年时间,不过DNA测序、计算技术等相关技术的齐头并进会缩短这一进程。专家们预计:未来5年,将会形成数个全球性的合成生物学研究平台;未来10年,合成生物产品产值将达200亿美元,生产细胞以制造大宗化学品和精细化学品将成为常态;未来20-30年,将理性地合成多细胞组织或器官,细胞计算系统将得到广泛应用,新颖的生物制造工艺将被应用于生产非生物产品。
四、合成生物学发展面临的挑战
要充分释放合成生物学的潜力,需要克服技术、监管、知识产权等诸多挑战。
1.技术挑战。发展合成生物学在元件及应用、互操作、度量、量产成本控制、工具及软件等方面面临挑战。在元件及应用方面,开发一大批标准化、模块化、行为可预测、可广泛应用的生物元器件是近在眼前的挑战。尽管有数以千计的生物元件已编目,但可重复且可靠的生物元件并非广泛可用。在互操作方面,合成生物学发展的关键之一是开发出标准化的生物元件,像模块一样可靠地组装,视情调整。为了得到普遍认可和应用,生物器件和系统的每个元件以及数据库、度量单位和可扩充系统在不同尺度和水平上都要兼容。在度量方面,准确度量系统性能是合成生物学面临的迫切挑战,有必要形成能支持多种度量类型的基础设施,而且未来全球统一的度量单位与度量本身一样重要。在量产成本控制方面,经济合算地生产工业化学品需要工程化生产高效微生物株,然而,现在开发含有合成生物元件的可行产品仍是一项艰巨的任务。在工具和软件方面,改进数据收集工具、软件和硬件对于合成生物学发展也很重要。除了可降低合成生物元件成本的自动化工艺外,专业化计算工具(如计算机辅助设计和建模工具)的缺乏也阻碍了合成生物学的发展。
2.监管问题。科学进展往往快于政策制定,同时合成生物学的界限也在不断变化,因此在早期就应关注与合成生物学治理和监管相关的问题。
3.知识产权问题。构建新的生物元件带来了一系列问题:对生物元件的权利是否应私有?如何进行生物元件登记?是否应对其申请专利?不同的知识产权和分享安排如何影响合成生物学的进步与创新?目前各国专利法规定不一。合成生物学在现有或新的知识产权体系下能否蓬勃发展是研究人员关注的一个重大问题。鉴于已经开发的合成生物元件数量巨大,并且企业对商业化产品开发有浓厚的兴趣,解决知识产权问题异常重要。
4.包容问题。合成生物学是交叉性学科,既产生于多个学科,又回馈于这些学科。持续包容对于合成生物学的持续发展十分重要。一方面,要与产业界、监管和政策制定机构交流合作,使技术推动与市场拉动相结合。另一方面,还要使更多的公众参与合成生物学对话,了解其可能存在的内在风险,讨论有关的生物安全和伦理问题。
(作者:贾 伟,中国科学技术信息研究所副研究员,主要研究方向为国外科技政策与发展战略。
刘润生,中国科学技术信息研究所助理研究员,科技参考研究室负责人,主要从事科技战略与政策研究。)
链接:
合成生物学(synthetic biology),最初由Hobom B.于1980年提出来表述基因重组技术,随着分子系统生物学的发展,2000年E. Kool在美国化学年会上重新提出来,2003年国际上定义为基于系统生物学的遗传工程和工程方法的人工生物系统研究。
“合成生物学”更早可追踪到波兰科学家Waclaw Szybalski采用“合成生物学”术语,以及目睹分子生物学进展、限制性内切酶发现等可能导致合成生物体的预测。“系统生物学”则可追踪到贝塔朗菲的“有机生物学”及定义“有机”为“整体或系统”概念,以及阐述采用开放系统论、数学模型与计算机方法研究生物学。