HI,欢迎来到好期刊网!

高速铁道技术论文

时间:2023-02-16 10:10:09

导语:在高速铁道技术论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

高速铁道技术论文

第1篇

关键词:CA砂浆,干料,搅拌

 

1. 干料团现象

高速铁路板式无砟轨道水泥乳化沥青砂浆(Cement and emulsified asphalt mortar, CA 砂浆)是由乳化沥青、水泥、细骨料、水和外加剂经特定工艺搅拌制得的具有特定性能的砂浆,分为CRTS(ChinaRailway Track System, 中国轨道系统)Ⅰ型和Ⅱ型两种[1, 2]。水泥乳化沥青砂浆采用灌注施工的方法,厚度为30~60mm,起支撑、调节、吸振等作用,是高速铁路系统的关键功能材料之一[3-7]。

新拌CA砂浆为具有较强流动能力、均匀分散的介稳悬浮体[8]。论文格式。其原料采用乳化沥青加干料的双组分模式,即液相原材料均添加于乳化沥青中,而固相的原料均添加于干粉砂浆中,此外,需加入一定量的水以调节砂浆的流动度。由于其含气量、分离度、工作时间等方面的要求,CA砂浆需用特定的搅拌装置并采用特定的搅拌工艺进行拌制。

CA砂浆一般的搅拌工艺为:先加入液料和水,搅拌一定时间;再加入干料;干料加完后高速搅拌一定时间;然后再慢速搅拌一定时间;再取样检测;检测合格后卸料。可笔者在施工过程中发现,施工一段时间之后,原先均匀砂浆中出现了一些小“疙瘩”,将“疙瘩”破碎后可看到灰白色未被润湿的干料,如图1所示。

图1 新拌CA砂浆中出现的干料团

未被搅散的干料团将对CA砂浆的质量产生严重影响。首先,它使砂浆实际的配合比受到影响,因为干料的局部集中将导致其他浆体中干料数量过少;另外,它将影响砂浆的力学性能,其力学的均匀性将因干料局部集中而改变,整体力学性能也将受到影响;此外,它将严重影响砂浆的体积稳定性和耐久性,未被分散的干料团在后期水化导致的体积变化将严重砂浆的体积稳定性,进而对砂浆耐久性产生影响。

2. 原因分析

由于此前并未出现过该现象,基本可以排除这是因搅拌时间不够导致的;另外,通过对原材料进行筛分和肉眼观察等,发现原材料中干料并没有因受潮而出现成团现象。在将这些因素排除后,笔者对砂浆搅拌车进行了观察,发现干料加料口粘料和搅拌机搅拌臂粘料是导致出现干料团的原因,如图2、3所示。

在图2中,干料加料口位于搅拌主机上方,当搅拌机载高速搅拌时,所飞溅起来的浆体将落至干料的加料口,并附在加料口表面。当搅拌下一盘CA砂浆,已通过计量的干粉被螺旋输送至加料口,粘在飞溅起来的CA砂浆表面,并没有完全落入搅拌主机内。随后,随着搅拌导致的振动等,部分干料才落入搅拌主机,但由于这部分干料搅拌时间不够,因此呈干料团状态。在早期,由于加料口较为洁净、平滑,口直径也较大,干料即使被粘住也很快落入搅拌主机中,但随着干料的越积越多,表面变粗糙,口直径也变小(图2),干料将很难短时间掉入搅拌机内。

在图3中,搅拌机采用三加一的叶片模式,叶片在绕搅拌中间的叶片轴转动外,还有主机的中心轴公转。论文格式。在加料时,由于叶片经过干料的加料口,部分料粘在搅拌臂上,随着搅拌臂的转动,部分干料才逐渐落入搅拌机内,而导致分散不均匀,出现干料团。同样在早期,由于搅拌臂较为洁净、平滑,且直径较小,不会出现干料团现象,但随着砂浆在搅拌上的积累与粘附,搅拌臂变粗、变粗糙,而导致了干料团现象。论文格式。

3. 防治措施

在经过干料团出现的原因进行分析后,我们对砂浆搅拌机的加料口和搅拌工艺进行了改进,有效的防止了新拌CA砂浆中干料团,如图4、5所示。

在图4中,笔者对加料口用橡皮套进行了延长,这样做有三个好处,首先,可以避免砂浆飞溅入加料口,而使加料干料结块,粘料甚至堵塞加料口(现场时有发生);另外橡皮套伸至刚好与搅拌臂保持一定的接触,这样搅拌臂转至橡皮套时,可以拍打橡皮套,而使橡皮套的粘料落下,而不是在搅拌快完成时落下;此外,当橡皮套的永久性结料至一定厚度而影响使用时,只需将其换掉即可,不耽误工期,而不像原先的加料口,当料积至一定厚度必须全部清除才能继续生产。

图5为笔者进行二次高压进水改进后的搅拌臂,从图5可看出,改进后的搅拌臂上已经看不到会灰白色的干料。所谓二次高压进水,是指开始只加入少许水进行拌合,当干料加料完成后,再次加入一定量的水(已通过计量),并以高压的形式加入,以对搅拌主机叶片等进行清洗,这样可以有效地避免搅拌臂、叶片等部位粘料,起到了较好的效果。

此外,当干料因受潮等原因出现结块时,也会出现干料团现象,但此时以上的改进措施将很难防止干料团的出现。在结块程度较轻的情况下,可考虑降低加料速率、延长搅拌时间的方法。若结块程度较严重,废料或将干料过筛,也可起到防止干料团出现的作用。但最好的办法还是应对CA砂浆的原材料进行严格的存放,并缩短干料的存放时间,以防止干料受潮。

4. 结语

CA砂浆是高速铁路的关键功能材料,其好坏关系到高速铁路的成败,尽管目前我国的研究机构和施工单位已对其有较为深入的了解,但由于其复杂性、和敏感性,对其在实际工程的应用尚不能完全掌握,因此应在应用中不断的积累经验并加以改进。

参考文献

[1] 铁道部科学技术司. 客运专线铁路CRTSⅠ型板式无砟轨道水泥乳化沥青砂浆暂行技术条件[S].

[2] 铁道部科学技术司. 客运专线铁路CRTSⅡ型板式无砟轨道水泥乳化沥青砂浆暂行技术条件[S].

[3] COENRAAD E. Recentdevelopment in slab track [J]. European Railway Review, 2003, 9 (2):81-85.

[4] SHIGERU M., HIDEYUKI T.,MASAO U., et al. The mechanism of railway tracks [J]. Japan Railway andTransportation Review, 1998, 3:38-45.

[5] TAKAI H. 40 yearsexperiences of the slab track on Japanese high speed lines [C]// Proc of 1stInt Cof. Valencia: Basque Department of Transport and Public Works EuskalTrenbide Sarea, 2007:234-246.

[6] MURATA O. Overview of recentstructure technology R&D at RTRI[J]. Quarterly Report of RITI (RailwayTechnical Research Institute), 2003, 44 (4):133-135.

[7] KATSUOSHI A. Developmentof slab tracks for Hokuriku Shinkansen line [J]. Quarterly Report of RITI(Railway Technical Research Institute), 2001, 42 (1):35-41.

[8] 中南大学. 客运专线无碴轨道技术再创新研究报告[R]. 长沙: 中南大学, 2007.

第2篇

关键词:轨道交通 地铁 轻轨 容量

随着我国城市化进程的加快,城市人口和机动车的快速增加已大大超过城市交通基础设施的最大承受能力,交通状况严重恶化。城市交通问题已经严重影响城市功能的发挥和城市的可持续发展。为此,1985年4月19日,国务院在国发[1985]59号文指出:“为解决城市交通拥挤问题,必须综合治理。……从长远来看,在一些大城市要考虑快速轨道交通和地下交通,以缓和地面交爱的紧张状况”①。到1998年,我国已有京、津、沪、穗四大城市拥有地铁,总通车里程约75km。1998年,广州市地铁2号线、深圳市地铁1号线和上海市地铁3号线相继获国家批准立项动工后,今年将有15个城市获国家立项。据最新统计,目前在建和计划建设的地铁共21条线,长350km,总投资预计达1400多亿元。另外,鉴于轨道交通成本巨大的特点,国家要求在今后建设地铁时,设备国产化率必须在70%以上②。

由于我国轨道交通建设处于起步阶段,有必要澄清轨道交通的概念、性质和特点,学习国外和境外的先进经验,加以总结,避免重大决策失误,更好地为我国今后大规模的轨道交通建设服务。

1、城市轨道交通的概念

现在国内在轨道交通概念方面存在诸多的混淆,比如认为地铁必定是在地下行驶的交通工具,却不知国外地铁有的部分在地面、甚至在高架行走,例如,新加坡有2条地铁线,48个站(15个地下、32个高架和1个地面站),83km(其中地下19km、高架60.2km和地面3.8km)③。而我国现在地铁几乎是全地下结构,导致成本居高不下,如广州市地铁1号线,建设成本高达8~9亿元/km!轨道交通特征和概念的模糊不清可能会影响我国新的交通设施的规划、建设和营运,不仅造成重大经济损失,而且影响城市的健康发展。

快速轨道(Rapid Rail Transit or Rail Rapid Transit)是城市地下铁道(地铁)、轻型轨道交通(轻轨)、单轨(独轨)交通、有轨电车、新交通(new transport system, NTS)、高速磁浮列车和市郊(郊区)列车(通勤列车)等城市轨道交通的统称④。其共同特点是:运量大、速度快、安全可靠、准点舒适,可以在地面、高架和地下、半地下(open cuttings)的轮轨上行驶。轮轨系统一般有钢轮一钢轨系统和胶轮一混凝土轨系统两大类,世界上轨道交通主要以钢轮一钢系统为主,我国也不例外。轨道交通通常以电力驱动(直流电、交流电或线性电机传动,电压有600V,750V或1500V),一架空线网受电或第三轨(侧轨)受电,自动或人工操作控制。城市轨道交通的站距一般在市区1km左右,在郊区2km左右。但是,城市或区域之间的高速铁路站距较大,否则达不到200km/h以上的运行速度。

地铁(subway, metro, the underground),是地下铁道的简称,别名有地下铁(mass transit railway, MTR)、重轨(heavy rail)、快速轨道(rapid rail)、大都市铁路(metropolitan railways)。地铁可以在地面、高架和地下运行,有人把行驶在高架轨道上的地铁称为(高架地铁)。地铁是大容量的客运工具,高峰单向容量为3~7万人次/h,量大运行速度达120km/h,平均营运速度为30~45 km /h,这与站距有关。地铁需要道路完全隔离和封闭,从而确保了快速和准时,但线路一旦建成,更改非常困难,只能考虑延长线。地铁由于建设成本非常高昂,一般由市政当局或公共公司所拥有。地铁的信号和控制系统很复杂,用以满足地铁的快速和发车时间间隔。车站一般比较宽敞,高站台、有电动扶梯,有利于乘客上下地面。地铁一般位于城市核心区或城市内环路之内。

轻轨(LRT)是轻型轨道交通(light rail transit)的简称,是由原来的有轨电车(streetcar、trams or tramway)演变而来的。1978年3月在布鲁塞尔召开和第一届国际轻轨交通会议上统一了轻轨的称谓,英文简写LRT,认为轻轨交通的荷载比地铁和常规列车轻⑤。根据轻轨定义,独轨(单轨)交通、新交通系统(New Transport System)、轻轨地铁(Light Metro)、轻型快速交通(Light Rapid Transit)、高架线性系统等都属于轻轨范畴。轻轨线路有地面、高架和地下线,地下线比较少见。轻轨建设成本为地铁的1/3~1/5[7]。轻轨一般位于城市内环路之外。

市郊(通勤)铁路(commuter rail)担负着大城市市区与郊区卫星城镇或社区之间的客运联系,一般与地铁站或轻轨站有方便的换乘关系。通勤铁路以架空线网供电,站距长、速度快。它属于重轨交通,与货运列车的兼容性强。

高速铁路指导运行于大城市或区域之间,甚至国家之间的高速轨道交通,如欧洲之星(TGV)、日本的新时速、中国的广深准高速列车,营运速度在200以上,最大速度达350km/h。新研制的磁浮高速列车,时速将达500km/h。一般把高速铁路归为区域或国家铁路系统,所以狭义上说不是城市轨道交通的研究范围。

2、城市轨道交通的基本特征

目前,世界上拥有城市轨道交通的城市有320多个,其中有地铁的占5%,有地铁和轻轨的占11%,有轻轨和有轨电车的占84%,全世界轨道交通的营运线路长达5200km。发展中国家发展很快,目前有730多km的营运线路,占全世界的14%④⑦。轨道交通在世界上的分布情况,见图1⑧。

轨道交通与其他交通模式的特征比较见表1和表2。

综上所述,小汽车机动性强,从门到门,但是道路面积大,综合运能不大,能耗大,污染严重;公共汽车机动性好,基础工程简单,成本低,能耗虽然不大,但是综合运行速度慢,影响运能,污染大;有轨电车工程造价低,能耗低,成本低,无空气污染,运行速度慢,运能提不高;轻轨运量和运行速度均较大,安全、准点、能耗低、无污染,造价比地铁低,但是占用地面空间;地铁运量大,运行速度大,安全、准点、能耗低、无污染,不占用地面空间,工程造价高,但是综合效益好。

3、因素分析

3.1线路类型

线路类型影响轨道交通的营运速度和容量、服务质量和投资成本。根据线路的隔离和封闭程度,可以分为三种类型:

A型线路:全封闭、无平面交叉、具有专用的路权(exclusive rights-of-way),如地铁线路,营运速度30~45km/h;

B 型线路:大部分线路处于封闭和隔离状态,有部分平面交叉口。在交叉口,轨道交通优先通过,以确保快速的营运速度,具有大部分的路权(substantial rights-of-way),如轻轨线路,营运速度25~35km/h;

C型线路:只要小部分线路处于封闭或隔离,与其他交通混行,有大量的平面交叉口,如有轨电车和常规公交车线路,营运速度14~18km/h。

三种类型线路与服务质量和投资成本关系见图2。

服务质量

从图2可知,A型线路比B、C型线路具有更高的投资成本和服务质量,但是它占地更多,线路更改更加困难,弹性小。

线路类型在轨道交通中的应用见表4。

3.2 线路结构形式

线路结构形式有地面或半地面分级、高架轨道和地下轨道三种形式。线路在垂向的结构形式对轨道交通的建设成本影响最大。世界轨道交通建设经验表明,一般情况下,地面结构与高架、地下结构的投资成本的比例,大致在1:2:6的关系。如果建设一条15km长的轨道交通,在地名分级系统约3.3亿美元,高架6.6亿美元,而地下结构则高达20亿美元。特别是地下结构,成本与当地的地质水文条件、施工方法、车站规模等关系很大,但是与轨道交通技术水平影响不大。轨道交通结构形式与建设成本(含设备)的关系如表5。

为了更清楚地说明线路结构对建设成本的影响,表6列出了世界一些大城市的轨道交通成本情况。

3.3系统技术类型

轨道交通之间的技术差别主要是列车的控制方式。根据轨道交通的控制方式,大致可以很分为三种技术类型:①司机控制的交通系统;②自动控制的钢轮一钢轨系统;③人工/自动联合控制的交通系统,如有轨电车、胶轮系统等。

自动控制系统与司机控制的系统相比,具有如下优点:

·可在地面、地下和高架行驶,车道窄、占地少;

·噪声低、无空气污染、卫生清洁;

·性能优、安全可靠、车辆耐用、易维修;

·因多节车辆编组,容量大、劳动生产率高、能耗低、单位营运成本低;

表6 案例城市轨道交通建设成本(12)(1983)

其主要缺点如下:

·与其他交通兼容性差,在地面行驶问题更多;

·只能在轨道上行驶,线路在低密度区不经济;

·改线或更改调度灵活性差、车辆更新困难(因车辆寿命长)

·投资成本高

胶轮系统指橡胶轮胎(充氮气)在钢筋混凝土轨道上运行,并附有钢轮一钢轨作用,以防万一胎破裂,目前已经在巴黎、蒙特利尔、阿德莱得、墨西哥和日本的Sapporo用。胶轮系统与钢轮一钢轨系统比较有明显的特点:噪声小、爬城能力大(最大7%,而其他5.5%)、能大、控制系统复杂、造价高,只能在全封闭的轨道上行驶。

3.4营运服务类型

在分析和选择轨道交通模式时,发车频率(间隔)和列车容量是必须考虑的重要因素。发车频率和容量影响轨道交通系统以及乘客的成本费用。如果发车间隔长,营运成本就低,但是增加了乘客的等待时间成本。从理论上来说,全自动控制系统确保了列车的高容量。客运量与发车成正比,因为发车频率(一般30~120次/h)提高可以增加轨道交通的吸引力。但是,发车频率与车站设施、列车速度、安全程度等有关。单位营运成本与客运量的关系曲线,见图3。当列车频率一定(如30次/h)时,列车容量增加,客运量也增加。随着客运量的增加,总营运成本(包括轨道交通系统成本和乘客时间成本)下降,但是当列车容量一定的情况下,存在一个最佳客运量,此时,总成本最小。

4、结语

我国对轨道交通的特征描述过于笼统,缺乏详尽的对比分析。在轨道交通的概念和内涵方面,也比较模糊、不确切。由于特征和适用性了解不透,特别可行性研究不深,导致有些城市轨道交通规划随意性大,一会儿上地铁、一会儿上轻轨,线网规模大大超过预期的发展水平,为了获得立项,客运量也常常过高估计。在社会主义市场经济条件下,市政府是轨道交通巨额投资的主体,如果决策失误,市政府将永远背上沉重的财政包袱。世界经验表明,只有满足经济实力(包括经济潜力)和人口密集两个重要条件,才能上轨道交通,如北京、上海、天津三座直辖市,副省级市广州、深圳已经满足条件;而新直辖市重庆位于内陆,尽管人口密集,但是经济实力弱,地铁中途停工就是最好的说明。每个城市应该根据当地的实际情况,苦练内功,加强轨道交能特征比较研究,选择正确的交通模式和线路结构,才能促进城市交通健康发展。

参考文献

①彭长生,南京城市交通发展与快速轨道交通规划,城市国道交通学术研讨会论文集。北京:中国铁道出版社,1997,P71~75

②南方日报,1996—06—07

③http://WWW.Subway.net

④施仲衡主编,地下铁道设计与施工,西安:陕西科学技术出版社,1997

⑤良,轻轨技术讲座概要,中国市政工程1997[4],51~56

⑥Schumann, J.W., What is New in North American Light Rail Transit Projects? TRB (Transportation Research Board, USA) Special Report 221,1989.

⑦包宗华,中国城市化道路与城市建设,北京:中国城市出版社,1995

⑧Pushkarev, B. S., Urban Rail in America, Indiana University Press,1982

⑨谭复兴、翁梦雄,上海市区高架轨道交通系统模型及车辆选型的研究。城市轨道交通学术研讨会论文集,北京:中国铁道出版社,1997,P100~105

⑩Vuchic, V. R., Place of Light Rail Transit in the Family of Transit Mode. TRB Report 161,1975,P62-75

(11)In Stare, S and Liu Zhi (ed.) Allport, R., Investment in Mass Rapid Transit. China’s Urban Transport Development Strategy, The World Bank,1997

第3篇

1. 引言

近年来,伴随着国家综合国力的全面提升,我国高速铁路建设取得历史性跨越,进入全面建设时期。无砟轨道作为一种稳定性高、轨道刚度均匀、具有较强的结构耐久性、容易维护、可降低桥梁二期恒载、减少隧道净空开挖、综合效益高的轨道结构形式,因此,对无砟轨道施工技术进行研究是很有必要的。

2. 无砟轨道施工技术难点

与普通铁路有砟轨道相比,高速铁路无砟轨道系统的施工工艺更为复杂,技术含量更高,其难点主要体现在以下五个方面:

(1)轨道基础地基沉降变形规律难以控制。无砟轨道整体形态是通过扣件系统进行维持,因此,必须采取技术经济合理的处理措施保证轨道地基的稳定性。

(2)精密测量技术。传统的测量技术已经无法满足高速铁路无砟轨道系统的施工建设需求,需要采用高精度的现代工程测量方法来保证保证无柞轨道线路平顺性。

(3)轨道平顺度控制。高速铁路与普通有砟铁路的最显著区别是需要一次性建成可靠、稳固的轨道基础工程和高平顺性的轨道结构。轨道的高平顺性是实现列车高速运行的最基本条件。

(4)无砟道岔施工。道岔区无砟轨道施工应严格按相关规程进行,在保证无砟轨道的道岔间无缝的同时还要注意与不同区间、不同标段间无缝线路施工相互协调。

3. 无砟轨道施工关键技术

3.1 无砟轨道测量

无砟轨道施工阶段测量主要包括三个内容:线下施工测量、无砟轨道铺设测量以及竣工测量。线下施工阶段测量主要工作是控制网的复测和控制网加密;对于无砟轨道铺设阶段测量,关键工作就是CPⅢ控制网的布设,平面测量要求满足五等导线精度,线路起闭于CPⅠ或CPⅡ控制点。导线长度不超过2km,点间距150~200m之间,距线路中线3~4m,需要再线下施工完成后无砟轨道铺设前进行施测,控制点需要用钢筋混凝土包桩,以保证其精度不受环境影响。高程测量采用起闭于二等水准点的精密水准测量施测,水准线路不超过2km。竣工阶段测量主要是维护基桩测量和轨道几何形状测量。

3.2 水硬性混凝土支承层铺设

水硬性混凝土应按设计方案配比,集中拌合,用运输车运输、倾倒。摊铺时沿测定位桩拉线,控制摊铺机走行方向;注意控制并调整摊铺机的碾压力、集料投料速度等工艺参数;同时及时拉线检查支承层的顶面高程。在支承层水硬性混凝土摊铺完毕12小时内,用锯缝机在支承层表面锯切间距5m深度l0cm的伸缩缝;同时修整支承层边缘轮廓尺寸。最后在支撑层上覆盖保湿棉垫,在保证混凝土上表面湿润,且不受阳光直射和风吹的前提下覆盖养生3天。

3.3 轨道安装定位

轨道安装定位的主要工序依次分别为首先铺设轨枕、安装工具轨然后进行轨道调整定位再进行轨道电路参数检查最后轨道精确调整和固定。施工时,一般100m为一个施工单元组织施工。

3.3.1 铺设轨枕、安装工具轨

轨枕铺设使用散枕机施工。散枕机通过挖掘机特殊改装而成,挖掘机上安装专用液压轨枕夹钳,进行轨枕的吊装、并按照正确的轨枕问距直接将轨枕摆放到位。

3.3.2 轨道调整定位

轨道调整定位施工采用专用支撑架、双向调整轴架完成,支撑架间隔2.5m设置,双向调整轴架每隔3根轨枕对称设置,双向调整轴架基座预先安装在钢轨底面。

支撑架内安装宅钢轨夹钳和竖直调整装置。首先使用水准仪测量轨道面高程,起落竖直调整装置,使轨顶标高满足设计值。允许误差为±10mm;用扳手上紧双向调整轴架的竖直螺栓。螺栓端头与垫板顶死、受力。

在每一组双向调整轴架基座间安装传力杆后,用扳手旋转传力杆,逐点调整轨道至设计中线位置.容许偏差为±5mm,并用全站仪精确测量复核。轨道调整定位合格后,在细调定位支座的预埋位置钻孔,安装定位支座。

3.3.3 轨道精确调整和固定

轨道精确调整在道床板混凝土浇筑前l.5~2小时前进行。按照细调定位支座位置划分检测断面,使用轨检小车和全站仪逐一检测每一个检测断面线路的水平、高低、轨向等几何形位和中线位置。根据轨检小车输出的检测数据确定检测断面处轨道精确调整的量值。

用扳手微动调整双向调整轴架的竖直螺栓丝杆,调整线路的几何行位,直至满足设计要求。在细调定位支座上安装螺旋调整器,旋转调整手柄,使调整刻度达到调整量值.确认轨道中线位置调整到位。将“U”形卡板插入细调定位支座内卡紧,然后将卡板与轨枕的钢筋桁架焊牢,完成轨道固定。

3.4 道床板混凝土浇筑

混凝土入模后,立即插入振动棒振捣。对轨枕底部位置混凝土要加强振捣,确保混凝土的密实性;捣固时防止振动棒触碰双向调整轴架的竖直螺栓和其它固定装置。道床板混凝土表面用平板式振动器振平并以人工抹平,确保道床板的顶面高程、平整度和排水坡度符合设训标准。同一配比每班次应制作5组试件。

道床板馄凝土浇筑2~5小时后,松开双向调整轴架的竖直螺栓和其它固定装置。混凝土灌注完成后应立即进行表面覆盖。混凝土终凝后喷洒养护剂养护14天左右,防止其表面产生裂纹。双向调整轴架的竖直螺栓取出后,遗留的螺栓孔应采用高标号的砂浆封堵。

4. 结语

我国高速铁路已进行了多年的技术准备,研究和攻克了不少重大难题,但无砟轨道施工技术对于我国铁路建设来说仍然是一个既复杂又新颖的课题,在建设中仍有许多问题值得研讨。本论文主要分析了高速铁路无砟轨道施工的技术难点和施工中的关键技术,期望能对高速铁路无砟轨道施工提供有益的参考。

参考文献

[1] 何华武. 无砟轨道技术[M]. 北京:中国铁道出版社,2005.

[2] 雷位冰. 秦沈客运专线无砟轨道铺设技术. 成都:西南交通大学工程硕士学位论文,2003.

第4篇

关键词:铁路基础设施;监测;振动传感器;数据采集

中图分类号:TN919 文献标识码:A

0.引言

进入21世纪以来,我国铁路建设发展迅猛,取得了良好的经济与社会效益。随着铁路运输速度的迅速提升,再加上其相对方便舒适的环境和价格上的优势,势必能吸引越来越多的人选择铁路作为他们旅行的交通工具,然而,伴随着铁路运输的飞速发展给人们带来的交通上的快捷与方便,车体与铁轨的振动故障对公共财产及人身安全构成了前所未有的威胁。

伴随着我国铁路立体跨越式的迅猛发展,轮轨间激扰力与激扰频率随着车辆行驶速度的不断提高,逐渐增大,变宽,结果会造成电机等吊挂设备和车内设备的高频高幅振动,引起车体设备振动能量的急速加剧。如果超过了铁路各设备所允许的振动强度范围,未来的工作性能指标及使用寿命将会受到过大的动态载荷和噪声的严重影响,情况越发严重会导致零部件的早期失效。当前大量事实表明,在长期作用的情况下,铁路振动故障可能会导致货物破损,轨道破坏,列车脱轨等危险情况。为确保铁路“安全、经济、快捷、舒适”的特点和优势,铁路建设要不断发展完善其各项功能,才能在越发激烈的市场竞争中取得优势,因此,各国都加强了对铁路振动的检测及分析,也增加了对其的投入力度。

今年我国对铁路振动检测领域的人力物力投入有明显增加,并且研究范围扩展到众多方面。以往铁路振动检测系统只配备在一些重要单位或者要害部门,而在2000年以后,各个铁路站段及各个振动检测站点基本都已经涉及发展应用到。铁路振动检测系统的重要性越来越被人们所认可,近些年又不断完善各项相应的标准和规范。为了保证铁路的运输安全、高效舒适的科学发展及以人为本的发展要求,确保铁路的优势和特点,如何准确检测高速铁路的振动并判断故障是摆在铁路工作者面前不容缓的实际问题。

1.数据采集系统设计方案

如图1所示,本论文用于铁路基础设施监测的振动传感器数据采集系统主要由下位机系统和上位机节点两个大的部分组成。系统设计方案的结构框图下位机系统里包含了振动传感器数据采集模块、IIC实时数据传输模块、微处理器模块和电源模块五个单元。

振动传感器把接收到的振动信号数字化,通过IIC数字传输方式,将数据发送给微处理器STM32F103ZET6。微处理器作为控制单元,用于接收振动传感器数据并进行数据处理分析计算,通过RS-232串口通信,运用MAX3232电平转换芯片及CH340 RS-232串口转USB芯片,实现了XYZ三轴振动数值发送到上位机进行控制显示。因为目前个人电脑上已很少有串口,所以我们使用RS-232串口转USB口芯片CH340G,数据可以从USB口进入PC上位机。由于每一个节点的检测范围有限,使用多个这样的节点共同检测则可以扩大系统的监测范围,提高系统的整体工作性能。整个铁路振动检测系统是由多个下位机节点互相协作共同完成系统功能的。

2.系统硬件设计

2.1 系统硬件设计思想

本论文的铁路振动检测系统是由振动传感器数据采集模块,IIC实时数据传输模块,微处理器模块以及RS-232有线通信模块和电源模块组成。

振动传感器数据采集模块对铁路振动的振动数据信号进行实时采集,将采集到的数据数字化,并通过IIC实时数据传输方式与单片机处理器通信,接着单片机处理器模块将采集的数据进行数据处理分析,通过有线通信模块上传到上位机进行实时显示及存储,为铁路振动故障的判断提供合理依据。

微处理器中有数据处理分析算法的设计,完成对采集到的实时振动信号进行数据处理分析,判断当前得到的振动数据是否在铁路设备所能产生的振动范围之内并对数据进行干扰点剔除,去直流及多项式趋势项和平滑处理,计算出与自然坐标系夹角的角度,使整个铁路振动检测系统的性能与数据准确性得到大幅度提高,很大程度上降低了系统的错误上报率。

2.2 系统介绍

如图2所示,系y硬件部分可以分为五个部分:振动传感器数据采集模块、IIC实时数据传输模块、微处理器模块、RS-232有线通信模块和电源模块。

数据采集模块:由单片机处理器模块发出相应的控制指令配置振动传感器的控制寄存器,内部控制寄存器来决定信号的采集速度、通信方式、数据输出格式与带宽,振动传感器根据内部控制寄存器的值按要求采集振动信号。

实时数据传输模块:振动传感器采集的实时数据通过IIC传输方式,将数据发送给处理器,为之后的数据处理分析奠定了基础。

微处理器模块:主要工作是通过系统软件控制数据采集模块完成振动数据信号的采集,并对数据进行处理分析,然后控制RS-232有线通信模块将处理完成的数据上传至PC上位机进行显示及存储。该模块是振动传感器数据采集模块和RS-232有线通信模块进行联系的核心部分。

RS-232有线通信模块:将微处理器模块处理完毕的数据,通过RS-232串口通信的方式传递给上位机,上位机会自动显示及存储数据,供振动故障的判断使用。

电源模块:通过该模块,将5V外部直流电源转换成系统所使用的3.3V电源。

结论

本论文设计了一套铁路振动检测系统,该系统采用下位机整体检测模块PC上位机整体控制数据流向,并对上传的检测数据进行显示保存。从与传统检测方法的比较来看,它能够更加高效、深入、细致的对铁路振动信号进行检测、处理分析及显示存储,并为铁路振动故障的判断提供可靠依据。

参考文献

[1]冯晓芳.中国高速铁路的发展与展望[J].科技资讯,2009(1):129-130.

[2]段合朋.铁道车辆振动特性及平稳性研究[D].成都:西南交通大学,2010.

[3]柴东明.铁路实用微型振动测试仪研究[J].设备管理与维修,1994(11):18-21.

[4] Testing and Approval of Railway Vehicles from the Point of View of their Dynamic Behavior-Safety-Track Fatigue-Ride Quality(2ed edn). (Pairs:UIC)UIC Code 518, 2003, 2.

第5篇

关键词:铁路运输 生产力布局DEA理论 输入利用率

中图分类号: F530 文献标识码: A 文章编号:

铁路运输生产力指的是铁路运输过程中用铁路运输专业,制造精神与创造人类价值的产品,满足工作实际需求。铁路运输生产力的布局直接关乎运输产业综合能力、企业劳动资源组织、运力资源配置,决定着铁路运输的效率、质量、效益的基础性和源头性问题[][1]。

一、铁路运输生产力布局和经济发展的适应性分析

铁路运输生产力布局和经济发展的适应性,主要体现为铁路运输和经济发展间的数量、质量、结构上的适应性和发展时序的协调一致性。自从工业化进程以来,社会化大生产艺依靠强大的运输系统提升生产和消费的相关环节,缓解生产要素的空间分布对于经济行业的相关制约。工业化初始阶段,铁路运输行业和经济发展的适应性主要体现在数量规模上,是一种粗放式的协同模式。伴随着经济全球化的脚步逐步加快,我国的产业结构进行针对性的调整以及转变经济增长方式,这种产业模式已经转化为数量、质量、服务保障能力和效率方面的综合性协调适应,要求铁路行业通过生产力布局深化调整,优化运力资源配置,提高行业现代化水平及其发展效益,全面适应经济发展的需求。

我们从不同的角度出发,铁路运输生产力布局和经济发展的适应性具有以下内涵特征:(1)“硬件”和“软件”的相容适应性(2)局部适应和整体适应(3)低层次和高层次的相互适应[][2]。

二、评价方法的选择

本文采取的数据包络分析(DEA)方法,对于铁路运输生产力布局和经济发展的适应性进行综合全面合理评价。DEA分析法中的决策单元输出与输入的权重作为变量,避免了通过主观方法确定指标权重;同时,不必确定输入输出指标间复杂的关系及其表达式;其输出结果一方面可以反映出决策单元的相对效率,另一方面又可以反映输入指标利用率,能够为铁路运输生产力布局提供有针对性的改进意见。

三、评价指标的建立

铁路运输生产力的布局和经济发展适应力主要表现为系统间的相互协调与适应。本文拟通过对铁路运输和经济系统间的投入产出关系,将铁路运输生产力布局的调整的相关性指标作为输出指标,对其适应性进行评估[

][3]。根据评估指标的选取的可操作性、系统性、动态性、独立性等原则,本论文主要从运力资源配置、运输组织管理、运量和收入、运输服务等4个方面进行入手,选取了铁路运输生产力布局调整效果的20项指标,还有和铁路生产紧密联系的国民经济发展的8项指标作为备选指标,与此同时,以降低指标相关性和全面、客观反映实际情况为主要原则,根据2000~2009年的数据,运用相关性分析和组成成分分析法,筛选出累计贡献率≥95%的指标。

四、实证研究

本论文以历年我国铁路运输生产力布局调整和经济发展情况作为决策模块,应用C2R为模型进行精细测算,结果如下表1:

表1 我国铁路运输生产力布局和经济发展的适应性评价值

对上表评价结果进行分析:

铁路实行运输生产力布局调整改革以来,与经济发展的适应程度逐渐提高。长期以来, 我国铁路运输行业发展缓慢,成为国民经济发展的“瓶颈”。从上表可以看出,2003年以来,运输生产力布局的调整改革加大了路网建设,提升了现代化水平,在高速、重载、提速等众多技术领域已经达到了世界级水平。

本文对营业里程、总换算周转量、劳动生产率指标的利用率进行测算,结果如下图1所示:

图1 输入指标利用率[ 数据来源:《环球时报》:中国铁路市场化,2011.8.23]

从营业里程的输入利用率来看,2000年以来,该项指标一直大于1,且呈现下滑趋势。长期以来,我国的铁路路网的建设相对落后,主要干线能力达不到要求,运输供需矛盾日益加剧。随着近年来铁路大规模建设,路网规模日益扩张,高速铁路运营里程将要超过一万公里,路网规模问题正在得到解决。

总换算周转量集中反映了铁路运输行业为社会经济发展提供的运输服务数量。在评价周期内该项数值指标一直大于等于1,在总体上呈现下降势头,存在一定的波动,铁路运输生产力布局的调整,使得运输服务和保障能力得到稳步增长,但是运能紧张的根本问题没有得到本质上的解决,区域性、季节性的运能紧张的问题依然存在,运输服务质量依然不能满足经济需求[][5]。

关于适应性的动态性问题:经济的持续发展,使得铁路运输需求得到持续更新,快速、便捷、高效、经济、安全、环保的铁路运输服务应运而生,铁路运输的能力呈现阶跃式提升,路网规划建设的合理性也得到普遍提高,和其他运输方式的协调配合度,以及铁路运输的组织管理水平都能够对铁路运输能力产生影响。

五、小结

2003年,铁路运输生产力布局开始调整变革,我国的铁路运输网进一步整合完善,铁路运输行业对于国民经济发展的“瓶颈”制约得到了及时有效缓解。铁路运输的生产力布局的调整,投资巨大,任务艰难,一方面决定着铁路运输行业的可持续发展,另一方面对于国民经济的提升有着促进作用。系统深刻地分析铁路运输行业的生产力布局和经济发展适应力的协调一致性,可以为制定铁路运输深化调整的战略提供理论参考。

参考文献

[1] 深化铁路运输生产力布局调整的相关问题研究[Z].北京:铁道部运输局,北京交通大学,2011.

[2] 林木西,刘海莺.中国铁路业生产效率的经验分析[J].生产力研究,2010(4).

[3] 任民.我国铁路网运营的相对有效性评价分析[J].铁道学报,2006(6).

第6篇

关键词: 移动通信;铁路通信系统;应用;

中图分类号:S972.7+6文献标识码:A文章编号:

引言

铁路运输是国家的经济大动脉,铁路通信系统是直接保证铁路运输的重要工具,它的质量的好坏直接影响铁路运输的效率以及运输速度和安全。随着科技的进步和发展,各种高新技术被广泛地应用在铁路通信系统中,使得铁路通信系统得到逐步提高和完善,并提高了铁路运输的运输速度、效率以及安全可靠性,本文主要讨论移动通信在铁路通信系统中的相关应用。一、通信的作用

通信,指人与人或人与自然之间通过某种行为或媒介进行的信息交流与传递。铁路通信就是指利用有线通信、无线通信、光纤通信等现代化技术和设备,将铁路运输生产和建设过程中的各种信息进行传输和处理交换。随着我国高速铁路的建设和运行,对铁路通信技术提出了更高的要求,只有不断地发展和完善铁路通信系统,才能为现代化铁路的建设与运行提供重要技术支持和安全保障。

二、集群通信系统

集群通信系统是一种功能强大的专用移动通信系统,是通信与微处理机技术、程控交换技术、计算机网络技术紧密结合的产物。由于它具有群呼、组呼、强插、强拆等功能,特别适合于调度指挥以及应急、抢险等场合,并较好地解决了通信频率合理分配的问题,因而倍受专业运营管理部门的青睐,被确定为现行铁路移动通信方式的首选类型。 但是这一系统还具有一定的缺点,主要包括采用动态的频率分配,没有考虑与周围公用网的有效融合问题,没有先进的路由合理选择功能,并且在建立通路和自动过网时存在信息丢失现象,保密性不强,容易受干扰等,这些缺点对于话音通信的影响不大,但是会对列车与调度指挥中心之间的实时双向数据通信造成较大的误码。因而对于要求较高数据通信误码率的场合并不适合。

三、GSM-R技术

GSM-R(GSM for Railways)是在无线移动技术的基础上 ,发展起来的铁路专用通信系统。GSM-R 系统包括网络子系统、 基站子系统、运行和业务支撑子系统和终端设备等四个部分。该系统通过无线和直放站的方式,实现全线场强覆盖,通过调度台、车站台、机车电台、手持台和车载卫星电话等 GSM-R 线路设备, 实现调度指挥控制功能和通信功能,使铁路各级生产和管理人员通过本系统实时共享生产和管理领域信息,并向社会提供客货运及其他信息服务。 在 GSM Phase2+规范协议的高级语音呼叫功能:组呼、广播呼叫、多优先级抢占和强拆业务的基础上,加入了基于位置寻址和功能寻址等功能,适用于铁路专用调度通信的需要。主要提供列车调度、养护维修作业通信、应急通信等语音通信功能, 可为列车自动控制与检测信息提供数据传输通道。GSM-R 网络平台可支持和发展的通信业务:

3.1调度通信。 调度通信主要指利用 GSM-R 网络平台,实现列车调度、货运调度、牵引供电车调度等功能。 主要实现行车调度员、车站值班员和机车司机之间的通信,以及车站值班员、机车司机和运转车长(含不设运转车长的乘检)之间的通信,即“大三角”和“小三角”通信;

3.2 站场通信。 站场通信指利用 GSM-R 网络平台,可实现在铁路车站(场)内进行作业指挥和业务联系,为站内流动作业人员与流动作业人员、固定作业人员之间提供的通信联络系统。主要有平面调车电话、驼峰作业电话、货运电话、列检电话、车号电话、商检电话等专用通信;

3.3 施工养路通信。 施工养护通信是指利用 GSM-R 网络平台,可实现维修或施工临时组织的通信,主要用户包括维修或施工现场指挥人员、各工种(车务、机务、工务、电务、供电、车辆、等)单位在日常维护工作中所需的通信业务;

3.4应急通信。 应急通信是指在各种突发性事件中,利用 GSM-R 网络平台提供的无线通信业务,保证应急事件中的指挥和控制。 应急通信中用户包括各级救援中心指挥人员、 事件现场指挥人员及各工种(含车务、工务、电务、供电、水电 、机务 、车辆 、安监等 )作业人员 、有关调度人员、车站值班员、助理值班员、机车司机、救援列车主任以及其他相关人员;

3.5 公安通信。 公安通信是指利用 GSM-R 网络平台,为铁路公安部门进行突发事件处理和业务联系时提供安全、保密的通信手段。 主要用户包括乘警、车站巡警、各级公安指挥人员等;

3.6 战备通信。 战备通信是在发生局部战争或重大事件时,通过铁路既有有线、无线等多种通信手段,确保铁道部、铁路局、调度区段的通信通路畅通,确保调度中心、指挥所与现场的通信联络;

3.7 数据业务。 GSM-R 网络,通过叠加 GPRS(通用分组无线业务)系统和添加具有内部互联功能的 IWF,提供强大的数据业务功能。 可支持的铁路无线数据业务主要有:控制数据、调度数据、监控数据、施工养护数据、应急通信数据、公众服务数据等。

四、卫星通信

铁路沿线环境比较复杂,障碍物较多,在遇到突发性、严重的自然灾害,其他所有通信手段都失效时,通过卫星传送将应急现场信息发送至指挥中心是一条有效途径。宽带卫星系统现场接入方式分为车载型和便携型,可以根据管内区段交通便利条件进行配置。 根据现场卫星接入设备的对星调试方式又分为自动对星和手动对星,由于自动对星调试方式操作简单,比较适合于铁路应急通信技术人员使用,所以建议采用此种方式的接入设备。其通道质量要求与宽带无线接入方式一致,但由于卫星通信的特殊性,其通道时延要求有所不同。铁路应急通信宽带卫星地面接收站的设置有三种方案:方案一,将地面接收站设置在铁道部应急中心,再通过地面有线传输网络将现场信息发送至各路局应急指挥中心。该方案的优点是只需要在铁道部设立一个卫星地面接收设备,充分利用现有的传输网络资源;方案二,将地面接收站设置在各路局应急中心,再通过地面有线传输网络将现场信息发送至铁道部应急指挥中心。该方案的优点是各路局应急指挥中心可以快速掌握应急现场情况;方案三,将地面接收站分别设置在各路局应急中心和铁道部应急中心。 该方案的优点是如果发生严重自然灾害,导致路局和铁道部的的有线传输通道中断,那么可以通过卫星链路让路局应急中心与铁道部应急中心都能及时掌握应急现场的情况。

结束语

铁路通信网是保证行车安全、提高运输效率的有力工具。铁路通信是以运输生产为重点,主要功能是实现行车和机车车辆作业的统一调度与指挥。但因铁路线路分散,支叉繁多,业务种类多样化,组成统一通信的难度较大。所以,在铁路通信系统中应当将各种现代化的通信技术有机结合,以保证行车安全、防止作业事故,提高运输效率,加速机车周转,以及改善服务质量等。

参考文献

[1]钟章队.王文静.我国高速铁路数字移动通信制式探讨[期刊论文]-铁道通信信号 2001

[2]陈玲,李毓才,邢智明.铁路移动信息传输安全平台的设计与实现[J].中国铁道科学,2007

第7篇

关键词:大跨度 小角度 斜交框架桥 加固措施

中图分类号:U448.28文献标识码:A

在我国,斜交框架桥是自80年代以后才逐渐发展起来的,随着我国城市化进程的深入及物流网的兴起,高等级的公、铁路的大规模修建,在下穿既有铁路时斜交框架桥将被越来越多地采用。随着我国经济建设的进一步深入,综合国力的进一步增强,公路、铁路建设更注重景观、人文要求,更注重考虑远期、长远期规划。就目前而言,框架桥的顶进技术日益成熟,但如何保证箱体顶进质量和铁路安全运营,线路加固起到至关重要的作用。本文就已建成的张家口至涿州高速公路下穿沙蔚线17—17m双孔框架地道桥为例对线路加固措施作一介绍。

1.框架桥的结构计算方法

正交框架,活载加载方向基本顺框架跨度方向,在斜交角度较大的情况下(小于15度)可顺桥向取单位长度框架段,用平面杆系简化为平面框架模型计算内力进行分析,在斜交角度较小的情况下,框架桥在活载作用下空间效应增强,平面计算将会产生较大误差,特别是在特小角度下,框架的分节位置,框架结构尺寸,对不同位置的的阶段和框架不同部位的内力分布都有很大的影响。因此要采用空间分析方法,对荷载和约束在空间上进行模拟和简化,研究在斜交情况下框架桥的空间荷载效应。

有限元法是对结构进行空间分析的最常用也最有效的方法,对框架结构的空间模型简化有实体单元法、板单元法、和空间格梁体系。常用的计算软件有MIDAS、SAP、ANSYS等,在设计应用中一般采用板单元法格梁法即可满足计算精度。

2.工程概况

张涿高速公路在k30+567处与沙蔚铁路k42+210相交,设一座双孔框架桥顶进施工。桥体单孔净宽17m,中心线与沙蔚铁路交角为40度,框架桥锐角设计为45 度,整体双孔布置,框架桥中心线与张涿高速公路平面中心线重合;主体正向长度为19.26m,线路中心据主体边最小处为4.5m,前刃角长4.3m,后端尾墙长度3.3m,尾墙悬臂板长度为2.0m,箱体顶板厚1.1m,底板厚1.2m,边墙厚1.2m,中墙厚1.1m,箱体净高为6.9m,箱体总高为9.2m,框架桥沿铁路方向总长为58.34m,沿桥体中心线方向总长为39.19m,轨底距箱体顶面距离最小处为0.6m。

张涿高速公路下穿处沙蔚线为单线、20‰纵坡直线、普通线路、50kg轨、混凝土轨枕、路基为深0.5m左右的路堑。

3.线路加固方案

3.1线路加固内容(见附图)

(1)为防止顶进过程中,箱体两侧路基土体坍塌,在箱体两侧设防护桩

(2)为防顶进过程中线路横移,在顶进前端路基外设置前支撑桩和抗移桩。

(3)线路加固采用3-5-3形式扣轨加纵横梁方案。

3.2线路加固流程图

3.3线路加固重点工序施工工艺

(1)抽换枕木及扣轨:抽换枕木时,应严格按事先在钢轨上所标的枕木位置放置,严格采用隔六换一的方式进行施工。扣轨前所有换上的枕木必须带上U型卡子,钉上铁垫板,枕木与轨底间加绝缘胶垫,扣轨的枕木全部换上后,然后统一抬扣轨、上扣板螺丝。

(2)穿工字钢横梁:在枕底穿横向工字钢时,派专人在枕底与工字钢之间放置高度调整垫板。横向工字钢穿上后立即在工字钢底设置枕木头硬支点,用螺栓将工字钢与枕木连接,捣实石砟。

(3)上工字钢纵梁:横梁穿完后,抬运纵梁工字钢,从线路一侧抬运安装。纵梁安装后立即与横梁用扣板、U型螺栓连接,纵梁端头设置木梭头。在抬运工字钢跨越线路时,必须统一指挥。

4.线路加固安全措施

4.1线路加固前、加固全过程、桥体顶进期间均由主管铁路单位工务段对施工地段的钢轨进行检查监护,严格按铁路技术管理规程办理慢行手续,按规程规定设置车站、现场防护员和直通电话。

4.2抽换枕木严格按照隔六换一原则。穿入木枕后上鉄垫板钉齐道钉,并回填道碴捣实后方可进行第二根作业。

4.3铺设扣轨梁前应对线路进行一次全面检查,各项几何尺寸达到线路标准。

4.4横梁穿入采用每隔一根枕木穿入一根横梁的形式,横梁间距1.2m。所有横梁必须平直受力均匀,保持线路水平。横梁与扣轨的交叉点采用∮22的u型卡子扣板连接,每隔1.2m设置枕木支撑点。横向工字钢与枕木连接所采用的u型螺栓头和扣板不得高出主轨顶面20mm。

4.5架设纵梁时纵梁两端采用枕木堆制作支点,支撑点的面积不小于1m,纵梁接触的枕木垂直线路方向。纵梁布置要保证行车安全,不得侵入限界。

4.6线路加固、桥体由各站段组织人员进行施工监护,严格按照沙蔚公司批复的施工方案进行施工。

4.7桥体顶进过程中施工单位由专业的线路施工队24小时不间断的对线路几何尺寸进行检查,对超限处应进行及时处理,确保行车安全。

4.8线路加固防横移措施

(1)为保证顶进时前端横工字钢有可靠的支撑,在顶进前端路基外设置前支撑桩和抗移桩。支撑桩间距3.6m,抗移桩间距4.0m,直径为1250mm桩长13m。抗移桩顶设L型冠梁。线路加固横工字钢抵在L型冠梁上起到防止线路横移的作用(详见线路加固图)。

(2)设置钢筋拉环:配合钢筋混凝土抗横移桩,浇注顶板时在桥体尾部每隔3m设置拉环,桥体顶进时用10吨倒链牵拉线路,当桥体顶进穿越线路时用倒链锁定工字钢纵梁,另外一端固定在地锚上,随桥体顶进随拉紧倒链,控制线路中线,防止线路发生横移。

(3)桥体顶部使用顶进小车,变滑动摩擦为滚动摩擦,以减少摩擦阻力。顶进小车必须沿桥体顶进方向放置,使受力最合理。(附图)

5.结束语

大角度斜交框架桥顶进法施工,线路加固是关系到框架桥顶进质量和既有线安全运营的关键。张家口至涿州高速公路下穿沙蔚线17—17m双孔框架地道桥施工中,由于线路加固措施到位确保箱体的顺利顶进和质量,既有线的安全运营未受到任何影响(顶进期间该段线路慢行速度为25km/h)。

参考文献:

[1]胡拥军.大跨度小角度斜交框架桥顶进施工技术[J].铁道标准设计,2005,(8):59-61.

[2]刘积海.大跨度框架桥顶进技术在公铁立交施工中的应用[J].甘肃科技纵横,2005,34(1):99-100.

[3]刘晓翔.大跨度框架桥顶进技术在公铁立交施工中的应用[J].甘肃科技纵横,2004,33(3):76-77,79.

[4]卫星,强士中.铁路斜交框架桥顶板裂纹原因分析[J].桥梁建设,2004,(1):66-68.DOI:10.3969/j.issn.1003-4722.2004.01.019.

[5]周家新.下穿铁路斜交框架桥的空间结构分析[J].铁道建筑,2005,(7):31-33.

[6]冯卫星,段龙,魏立峰等.石家庄市东岗路过民心河斜交框架桥结构设计[J].石家庄铁道学院学报,2005,18(3):73-75.

第8篇

论文摘要:近年来,随着铁路事业的跨越式发展,对机车信号设备显示的准确性和工作的可靠性提出了更高的要求,机车信号正朝着主体化的方向发展。但是,由于机车信号的工作环境是十分恶劣的,机车信号的应该更多地考虑容错技术。

1 概述

随着既有线提速和高速铁路和客运专线的建设,列车运行速度越来越高,对机车信号的要求也越来越高,机车信号的地位也不断提高。铁路新《技规》明确规定:“作为行车凭证的机车信号为主体机车信号,是由车载信号和地面信号设备共同构成的系统,必须符合故障导向安全原则,车载设备应具有运行数据记录的功能;地面信号设备应能提供正确信息。”主体化机车信号就是能够满足主体机车信号要求的机车信号系统。主体机车信号将彻底改变以往机车信号只能作为辅助信号,简单地复示地面信号机显示的地位。

2 主体机车信号的组成与功能

主体化机车信号是一个系统工程,是由车载设备(机车信号)和传输通道(轨道电路)构成的一个完整的系统。传输通道(轨道电路)保证传递信息的准确性、连续性、唯一性;保证传递功率的可靠性,为接收设备创造良好的接收环境。车载保证译码的正确性,在恶劣环境下工作的高可靠性,各种信息的记录分析功能,以及故障导向安全的性能。

3 主体机车信号安全冗余系统

原先的机车信号一般是作为行车的辅助信号使用的。随着我国铁路的跨越式发展,列车运行速度的提高,机车信号已经不再作为简单的辅助信号,而逐渐发展成为控指挥列车运行的主体信号。但是由于机车信号的工作环境十分恶劣,为了保证机车信号的安全性、可靠性,我国目前使用主体机车信号系统应用了多项容错冗余技术。

3.1 双套主机板热备冗余结构

为了保证系统工作的安全性、可靠性,机车信号的主机板采用了双套热备工作方式的冗余结构。

3.2 DSP二取二容错安全结构

每一个仲裁微处理器对两路译码输出结果按照仲裁原则进行码型判决,两路仲裁微处理器通过串口对各自仲裁的结果进行比较,当结果一致时,控制输出。如输出结果确实不一致,则禁止输出,并立即退出工作状态。此时认定这一块主机板发生故障,主机切换到热备板工作输出。

3.3 具有自检测功能的双套传感器

机车信号线圈安装在机车的走行部位,受损坏的几率很高,所以对传感器的冗余设计十分必要。

每只传感器都有2套主绕组和1套副绕组(检测线圈)。左、右两端I线圈串联使用,作为I路隔离放大的输入;左、右两端II线圈串联使用,作为II路隔离放大的输入。左,右两端III线圈串联作为自检测信号互感线圈。在主机运行过程中,控制CPU不间断的发出自检测信号,通过传感器本身的磁棒感应到2套主绕组,每套主绕组均接收轨道电路信号和自检测信号,各自与主机的DSP子系统构成独立的数据分析系统。

两套主CPU板在解码时首先从叠加的信号中分离出自检测信号和轨道电路信号,当检测到正确的自检测信号时,表明I、II路线圈工作正常,分析CPU板使用I路轨道电路信号作为输入。一旦I路自检测信号不存在,说明该路线圈故障,分析CPU板即实施不间断热切换,选择II路的轨道电路信号作为输入,同时给出故障信息,以备查询、修复。

如果由于自检测线圈自身的故障或自检测信号因故未发送出,那么3个分析CPU板在未检测到自检测信号的情况下,对各自A/D转换器的两个通道的采样信号进行分析判别,如果两路信号都满足要求,任选其中一路作为输入信号;若其中一路因故障无信号输入或信号特性不满足要求,则分析CPU会选择特性好的进行运算分析,从而确保了系统的可靠性与安全性。

4 结束语

主体化机车信号系统还应用了一些其他的新技术,如多种的总线技术、新型显示器、新型电源等。正是由于这些新技术的应用,实现了具有高可靠性和高安全性的主体化机车信号,才使得机车信号成为主体化信号成为了可能。

参考文献:

[1] 傅彧,王小明,徐晔,等.微计算机信息.DSP在机车信号处理中的应用. 2005.

[2] 文小伟.中国西部科技.高速铁路实现机车信号主体化的解决方案. 2005.

[3] 徐建华.铁道通信信号.机车信号记录器数据分析处理系统的设计与实现. 2006.

第9篇

【关键词】铁路高职 生产企业 教学 案例库

【中图分类号】G71 【文献标识码】A 【文章编号】2095-3089(2015)06-0222-02

一、建设铁路实际教学案例库的背景条件及必要性

目前,铁路交通发展迅速。截止到2013年年底,全国铁路营业里程已超过10万公里,急需一批熟练掌握专业知识与技能,能解决操作难题,具备处理突发事件能力的高素质技术技能型专门人才。这就需要形成铁道交通运营管理专业企业生产实际教学资源库。

二、 铁路生产实际教学案例库建设的思路、目标

(一)案例库建设思路

(1)分类注重案例选取的典型性和相关性[1]。在案例库的建设中,始终围绕铁路交通专业拟讲授的核心课程和基本理论编制有代表性的典型案例,且所有案例均来自于已发生的我国铁路交通运营企业生产现场实际案例。(2)通过运输生产案例库的开拓,强调对铁路现有案例教学方法的创新,在总结当前运营案例教学法优劣的基础上,实现案例教学的实用性创新。(3)案例评价的市场化[2]。对于案例库,最重要的检验标准是市场是否需要。通过案例的启发性[3]教育,不断得到高职教学检验和铁路企业市场检验,从而使案例的质量和数量不断提高。(4)案例入库实现动态化。

(二)案例库建设的目标

建设铁路生产案例库的总体目标:可建立5个子案例库,分为:行车调度指挥、接发列车、调车安全、客运安全、货运安全等5个案例库子系统。

三、案例库建设的标准及维护

(一)建立案例库规范和标准

建立案例编写规范:遵循教育部《国家级精品资源共享课建设技术要求》,基本结构可概括为两部分,即铁路企业案例正文+使用说明。

(二)案例库网站建设与维护

功能设计方面:铁路生产教学案例库网站功能设计应遵循实用、便捷的原则,注重功能的可扩展性和可移植性;方便用户对案例进行查询和检索;给用户提供一个案例教学与研究的共享平台;有效地实现案例方面的沟通与合作。

维护和更新方面:设置专人负责案例库建设管理工作,相应制订案例库更新计划,及时补充案例库。

四、案例库设置的主要内容

为确保达到高职铁路交通运营专业实际教学案例库的标准和目标,筹建铁路交通运营核心课程专业生产案例库,可主要设置含5个子案例库:

(一)接发列车子案例库

接发列车作业,是铁路运输生产中最重要的工作环节之一。该子案例库以现行《技规》和《接发列车作业》标准为依据,以非正常情况下的接发列车为重点,结合分类安全事故案例,编辑接发列车子案例库,具有较强的实用性。

接发列车子案例库要点:电话中断时的接发列车案例;无空闲线路时的接发列车案例;设备故障时的接发列车案例;特种列车的接发列车案例;超长列车的接发列车案例;恶劣天气下的接发列车案例;危险货物的接发列车案例;施工条件下的行车组织案例;事故救援列车开行案例;行车事故处理案例。

(二)调车作业子案例库

调车作业是在铁路运输生产过程中的重要环节,该子案例库以列车在车站的到达、出发、通过以及在区间内运行、列车解体、编组、摘挂、转场等安全隐患较大作业为开发的重点。

调车作业子案例库要点:平面调车作业案例 驼峰调车作业案例; 推进调车作业案例;调车挤岔事故案例;调车冲突事故案例;调车脱线事故案例;调车人员安全上、下车案例;调车作业动、静观速;动、静观距案例; 调车作业人身安全防护案例;调车事故处理案例。

(三)行车调度指挥子案例库

行车调度指挥是铁路日常运输生产的中枢组织。该子案例库以列车运行严格实行单一指挥原则、统一指挥、实现列车安全正点运行为开发的重点。

行车调度指挥子案例库要点:调度集中系统安全应用案例;调度指挥信息管理系统安全使用案例;列车运行图编制案例;调度命令运用案例;红色许可证使用案例;施工调度安全组织案例;防台、防洪行车应急预案;电气化铁路安全调度指挥案例;高速铁路事故处理案例;行车事故应急预案。

(四)客运安全组织子案例库

客运安全组织是运输工作的重中之重。该子案例库以提高乘务人员的服务意识和非正常情况下应急处理问题的能力为重点,突出旅客列车安全行车组织、旅客运输事故处理及高速铁路旅客运输安全案例。

客运安全组织子案例库重点为:客运站安全管理案例;客运站人身安全防护案例;旅客上、下车安全案例;旅客行李安检案例;客票预售和站车服务系统安全案例;高速列车事故应急预案;乘务员岗位安全案例。

(五)货运安全组织子案例库

货运工作就是高质量、高效率地完成铁路月度货物运输计划及国家临时指定的重点运输任务。该子案例库以坚持计划运输、合理运输、直达运输和均衡运输为重点,突出货运安全案例,确保货运安全为目标。

货运安全工作组织案例库要点:货运交接安全程序案例;货物装载安全案例;危险货物运输案例;货运调度安全指挥案例;货运编组事故案例;货票分离事故案例。

总体要求:以上案例库所有约50个典型案例都来源于现场生产及各级行车人员密切配合、联劳协作的实践。案例要紧扣铁路交通运营各专业核心课程和关键点,简明扼要,重点突出,可操作性强。

五、建设案例库实施的步骤

具体的步骤程序如下:(图表1)

图表1 高职铁路运营专业实际教学案例库实施总体方案

六、成果及展望

(一)成果

直接成果:1)建立5个高职铁路运营专业生产企业实际教学子案例库,收集50个典型案例并最终形成完整的核心课程总案例信息化数据库;2)发表与铁路运营实际教学案例库建设相关的论文5篇;3)建立共享信息的轨道交通运营案例库教学门户网站1个。

间接成果:1)面向全国铁路高职院校交通运输专业学生、企业在岗职工、社会学习者的应用;2)为全国铁路交通运输教师教学服务;3)面向铁路企业单位培训与资源建设单位的应用。

(二)展望

铁路高职院校教学案例库建设与使用能够促进专业教师建立“统揽全局”、“点面结合”的教学理念,树立知识融合与知识集成、案例研讨与实践检验、系统科学与行为科学相结合的新型教学观,同时,对培养适应当前国家铁路多元化、多层次需求的应用型及技术型人才具有积极的深远的意义。

参考文献:

[1]陈东佐.建设法规概论(第三版)[M].北京:中国建筑工业出版社,2008(4),35

[2]王宏丽.对建设法规课程案例教学改革的思考[J].辽宁教育行政学院学报,2009(2),62

[3]赵剑锋.案例教学内容与方法改革的探讨与实施[J].大连铁道学报,2009(6),29