摘要:人类频繁的海洋活动中难免发生重物落水事故,对海底管道造成撞击损伤,引起环境污染及经济损失。为保证管道在运行期间的安全性,有必要准确快速的对管道损伤进行预测以便为实际工程提供参考。BP神经网络常作为损伤预测的一种数学模型,但本身易陷入局部极小且预测精度较低。针对上述问题,本文提出了基于遗传算法的BP神经网络(GA-BP神经网络)损伤预测模型。利用有限元计算数据构成样本空间,对管道损伤进行预测,并将结果与BP神经网络、有限元计算的结果进行对比。分析表明:与BP神经网络相比,GA-BP神经网络的预测结果与有限元计算的结果较为接近,预测精度较高,其平均误差为1.27%,满足工程精度要求的同时又节省了计算时间。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社