摘要:SAR目标检测,因成像场景大、背景复杂多变而极具挑战。传统基于恒虚警率的SAR目标检测方法极易受背景干扰。针对上述问题,提出一种基于深度学习的复杂沙漠背景SAR目标端对端检测识别系统。即采用小规模沙漠背景下的SAR图像数据对Faster-RCNN网络进行迁移训练,一体化完成典型目标的检测与识别。基于合成数据集Desert-SAR的试验结果表明,与传统方法相比,该方法检测速度更快、准确率更高、鲁棒性更强。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社
特别声明:本站主要从事期刊杂志零售,不是任何杂志官网,不涉及出版事务,特此申明。
工信部备案:辽ICP备19013545号-9 辽公网安备:21011302000173 © 版权所有:沈阳学刊文化有限公司