摘要:针对高分辨率遥感图像建筑物分割问题,提出一种Encoder-Decoder的深度学习框架,建立输入图像到分割结果之间的端对端的分割模型。其中Encoder以残差网络为基础,自动提取建筑物的特征;Decoder采用反卷积实现对特征图的上采样,从而完成对建筑物的分割;同时引入批量规范化处理,降低了神经网络权重训练过程中的梯度竞争,从而减小了神经网络的训练难度。实验表明:提出的建筑物分割算法能有效提取建筑物的块状特征和边缘信息,降低复杂道路等干扰的影响,提升建筑物的分割精准度,算法对邻近复杂道路的建筑物、规律性建筑物、单体复杂建筑物等3种典型建筑物的分割精度分别为:0.837、0.892和0.630;F值分别为:0.851、0.879和0.730。同时,多分辨率条件下的分割实验结果表明,该算法对于一定范围内的多分辨率遥感图像具有较好的泛化能力。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社