摘要:研究了贝叶斯网络分类器的高效参数学习方法。生成方法解决联合分布的参数估计问题,而判别方法解决后验分布的参数估计问题。对判别参数学习方法的研究,首先通过建立类条件贝叶斯网络模型;在此基础上,对该模型以对数形式参数化,得到判别类条件贝叶斯网络模型;最后,通过改进粒子群算法对该模型进行最优化求解,得到各节点的概率。将贝叶斯网络分类器的判别参数学习方法与TAN分类器相结合,可用于对液体火箭发动机的故障诊断与分类中。针对某型号火箭的两次仿真数据进行故障诊断与分类,与其他方法相比,改进的分类器需要的数据量小,准确率和学习效率更高。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社