摘要:针对KRX方法对高光谱图像进行异常目标检测时存在检测效率低和虚警率高的问题,在充分分析高光谱图像数据特征基础上,本文提出一种最优波段子空间方法的高光谱图像异常目标检测算法。该算法首先利用双边滤波方法对高光谱图像进行全局滤波,充分利用双边滤波的优点,使得高光谱图像背景信息得到抑制;然后采用经典的自动子空间方法对高光谱图像进行波段子集划分;再利用联合偏度-峰度指标,在每个波段子集内选出最优波段;最后利用这些最优波段构成新的波段最优子空间,在此基础上,在最优波段子空间中利用Kernel RX算法进行异常目标检测,从而得到异常检测结果。本文利用真实的高光谱图像进行仿真验证,获得异常目标、检测的虚警数和ROC等检测结果。结果表明,该算法具有鲁棒性强、虚警率低和检测精度高等优点。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社
特别声明:本站主要从事期刊杂志零售,不是任何杂志官网,不涉及出版事务,特此申明。
工信部备案:辽ICP备19013545号-9 辽公网安备:21011302000173 © 版权所有:沈阳学刊文化有限公司