摘要:Damping is critical for the roll motion response of a ship in waves. A common method for the assessment of damping in a ship’s rolling motion is to perform a free-decay experiment in calm water. In this paper, we propose an approach for estimating nonlinear damping that involves a linear exponential analytical approximation of the experimental roll free-decay amplitudes, fol- lowed by parametric identification based on the asymptotic method. The restoring moment can be strongly nonlinear. To validate this method, we first analyzed numerically simulated roll free-decay data using rolling equations with two alternative parametric forms: linear-plus-quadratic and linear-plus-cubic damping. By doing so, we obtained accurate estimates of nonlinear damping coefficients, even for large initial roll amplitudes. Then, we applied the proposed method to real free-decay data obtained from a scale model of a bulk barrier, and found the simulated results to be in good agreement with the experimental data. Using only free-decay peak data, the proposed method can be used to estimate nonlinear roll-damping coefficients for conditions with a strongly nonlinear restoring moment and large initial roll amplitudes.
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社